【OpenVI—论文解读系列】达摩院快速动作识别TPS ECCV论文深入解读

一、背景

许多工作尝试对时空自注意力进行分解,例如ViViT和Timesformer。这些方法虽然减小了计算复杂度,但会引入额外的参数量。本文提出了一种简单高效的时空自注意力Transformer,在对比2D Transformer网络不增加计算量和参数量情况下,实现了时空自注意力机制。并且在Sthv1&Sthv2, Kinetics400, Diving48取得了很好的性能。文章已被ECCV 2022录用。

二、方法

视觉Transofrmer通常将图像分割为不重叠的块(patch),patch之间通过自注意力机制(Self-Attention)进行特征聚合,patch内部通过全连接层(FFN)进行特征映射。每个Transformer block中,包含Self-Attention和FFN,通过堆叠Transformer block的方式达到学习图像特征的目的。

完整内容请点击下方链接查看:

https://developer.aliyun.com/article/1191077?utm_content=g_10...

版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。

你可能感兴趣的:(【OpenVI—论文解读系列】达摩院快速动作识别TPS ECCV论文深入解读)