【从零学习python 】32.装饰器的作用(一)

文章目录

    • 装饰器
  • 老大把工作交给 Low B,他是这么做的:
  • 老大把工作交给 Low BB,他是这么做的:
  • 老大把工作交给 Low BBB,他是这么做的:
    • 进阶案例

装饰器

装饰器是程序开发中经常会用到的一个功能,用好了装饰器,开发效率如虎添翼,所以这也是Python面试中必问的问题。但对于好多初次接触这个知识的人来讲,这个功能有点绕,自学时直接绕过去了,然后面试问到了就挂了,因为装饰器是程序开发的基础知识,这个都不会,别跟人家说你会Python, 看了下面的文章,保证你学会装饰器。

1、先明白这段代码

#### 第一波 ####
def foo():
    print('foo')

foo  # 表示是函数
foo()  # 表示执行foo函数

#### 第二波 ####
def foo():
    print('foo')

foo = lambda x: x + 1

foo()  # 执行lambda表达式,而不再是原来的foo函数,因为foo这个名字被重新指向了另外一个匿名函数

函数名仅仅是个变量,只不过指向了定义的函数而已,所以才能通过 函数名()调用,如果 函数名=xxx被修改了,那么当在执行 函数名()时,调用的就不知之前的那个函数了

2、需求来了
初创公司有N个业务部门,基础平台部门负责提供底层的功能,如:数据库操作、redis调用、监控API等功能。业务部门使用基础功能时,只需调用基础平台提供的功能即可。如下:

############### 基础平台提供的功能如下 ###############

def f1():
    print('f1')

def f2():
    print('f2')

def f3():
    print('f3')

def f4():
    print('f4')

############### 业务部门A 调用基础平台提供的功能 ###############

f1()
f2()
f3()
f4()

############### 业务部门B 调用基础平台提供的功能 ###############

f1()
f2()
f3()
f4()

目前公司有条不紊的进行着,但是,以前基础平台的开发人员在写代码时候没有关注验证相关的问题,即:基础平台的提供的功能可以被任何人使用。现在需要对基础平台的所有功能进行重构,为平台提供的所有功能添加验证机制,即:执行功能前,先进行验证。

老大把工作交给 Low B,他是这么做的:
跟每个业务部门交涉,每个业务部门自己写代码,调用基础平台的功能之前先验证。

老大把工作交给 Low B,他是这么做的:

跟每个业务部门交涉,每个业务部门自己写代码,调用基础平台的功能之前先验证。诶,这样一来基础平台就不需要做任何修改了。太棒了,有充足的时间泡妹子…

当天Low B被开除了…

老大把工作交给 Low BB,他是这么做的:

############### 基础平台提供的功能如下 ############### 

def f1():
    # 验证1
    # 验证2
    # 验证3
    print('f1')

def f2():
    # 验证1
    # 验证2
    # 验证3
    print('f2')

def f3():
    # 验证1
    # 验证2
    # 验证3
    print('f3')

def f4():
    # 验证1
    # 验证2
    # 验证3
    print('f4')

############### 业务部门不变 ############### 
### 业务部门A 调用基础平台提供的功能### 

f1()
f2()
f3()
f4()

### 业务部门B 调用基础平台提供的功能 ### 

f1()
f2()
f3()
f4()

过了一周 Low BB 被开除了…

老大把工作交给 Low BBB,他是这么做的:

只对基础平台的代码进行重构,其他业务部门无需做任何修改

############### 基础平台提供的功能如下 ############### 

def check_login():
    # 验证1
    # 验证2
    # 验证3
    pass


def f1():

    check_login()

    print('f1')

def f2():

    check_login()

    print('f2')

def f3():

    check_login()

    print('f3')

def f4():

    check_login()

    print('f4')

老大看了下Low BBB的实现,嘴角漏出了一丝的欣慰的笑,语重心长地跟Low BBB聊了个天:

老大说:
写代码要遵循开放封闭原则,虽然在这个原则是用的面向对象开发,但是也适用于函数式编程,简单来说,它规定已经实现的功能代码不允许被修改,但可以被扩展,即:

封闭:已实现的功能代码块
开放:对扩展开发
如果将开放封闭原则应用在上述需求中,那么就不允许在函数f1、f2、f3、f4的内部进行修改代码,老板就给了Low BBB一个实现方案:

def w1(func):
    def inner():
        # 验证1
        # 验证2
        # 验证3
        func()
    return inner

@w1
def f1():
    print('f1')

@w1
def f2():
    print('f2')

@w1
def f3():
    print('f3')

@w1
def f4():
    print('f4')

对于上述代码,也是仅仅对基础平台的代码进行修改,就可以实现在其他人调用函数f1、f2、f3、f4之前都进行【验证】操作,并且其他业务部门无需做任何操作。

Low BBB心惊胆战地问了下,这段代码的内部执行原理是什么呢?

老大正要生气,突然Low BBB的手机掉到地上,恰巧屏保就是Low BBB的女友照片,老大一看一紧一抖,喜笑颜开,决定和Low BBB交个好朋友。

详细地开始讲解了:

单独以f1为例:

def w1(func):
    def inner():
        # 验证1
        # 验证2
        # 验证3
        func()
    return inner

@w1
def f1():
    print('f1')

python解释器就会从上到下解释代码,步骤如下:

def w1(func):  # 将w1函数加载到内存
@w1  # 从表面上看解释器仅仅会解释这两句代码,因为函数在没有被调用之前其内部代码不会被执行。

从表面上看解释器着实会执行这两句,但是@w1这一句代码里却有大文章,@函数名是python的一种语法糖。

上例@w1内部会执行以下操作:
执行w1函数
执行w1函数,并将@w1下面的函数作为w1函数的参数,即:@w1等价于w1(f1) 所以,内部就会去执行:

def inner(): 
    #验证1
    #验证2
    #验证3
    f1()  # func是参数,此时func等于f1
return inner  # 返回的inner,inner代表的是函数,非执行函数,其实就是将原来的f1函数塞进另外一个函数中

w1的返回值
将执行完的w1函数返回值赋值给@w1下面的函数的函数名f1,即:


 新f1 = def inner(): 
             #验证 1
             #验证 2
             #验证 3
             原来f1()
         return inner

所以,以后业务部门想要执行 f1 函数时,就会执行 新f1 函数,在新f1 函数内部先执行验证,再执行原来的f1函数,然后将原来f1 函数的返回值返回给了业务调用者。

如此一来, 即执行了验证的功能,又执行了原来f1函数的内容,并将原f1函数返回值 返回给业务调用者。Low BBB 你明白了吗?要是没明白的话,我晚上去你家帮你解决吧!!!

进阶案例

【Python】Python 实现猜单词游戏——挑战你的智力和运气!

【python】Python tkinter库实现重量单位转换器的GUI程序

【python】使用Selenium获取(2023博客之星)的参赛文章

【python】使用Selenium和Chrome WebDriver来获取 【腾讯云 Cloud Studio 实战训练营】中的文章信息

使用腾讯云 Cloud studio 实现调度百度AI实现文字识别

【玩转Python系列【小白必看】Python多线程爬虫:下载表情包网站的图片

【玩转Python系列】【小白必看】使用Python爬取双色球历史数据并可视化分析

【玩转python系列】【小白必看】使用Python爬虫技术获取代理IP并保存到文件中

【小白必看】Python图片合成示例之使用PIL库实现多张图片按行列合成

【小白必看】Python爬虫实战之批量下载女神图片并保存到本地

【小白必看】Python词云生成器详细解析及代码实现

【小白必看】Python爬取NBA球员数据示例

【小白必看】使用Python爬取喜马拉雅音频并保存的示例代码

【小白必看】使用Python批量下载英雄联盟皮肤图片的技术实现

【小白必看】Python爬虫数据处理与可视化

【小白必看】轻松获取王者荣耀英雄皮肤图片的Python爬虫程序

【小白必看】利用Python生成个性化名单Word文档

【小白必看】Python爬虫实战:获取阴阳师网站图片并自动保存

小白必看系列之图书管理系统-登录和注册功能示例代码

小白实战100案例: 完整简单的双色球彩票中奖判断程序,适合小白入门

使用 geopandas 和 shapely(.shp) 进行地理空间数据处理和可视化

使用selenium爬取猫眼电影榜单数据

图像增强算法Retinex原理与实现详解

爬虫入门指南(8): 编写天气数据爬虫程序,实现可视化分析

爬虫入门指南(7):使用Selenium和BeautifulSoup爬取豆瓣电影Top250实例讲解【爬虫小白必看】

爬虫入门指南(6):反爬虫与高级技巧:IP代理、User-Agent伪装、Cookie绕过登录验证及验证码识别工具

爬虫入门指南(5): 分布式爬虫与并发控制 【提高爬取效率与请求合理性控制的实现方法】

爬虫入门指南(4): 使用Selenium和API爬取动态网页的最佳方法

爬虫入门指南(3):Python网络请求及常见反爬虫策略应对方法

爬虫入门指南(2):如何使用正则表达式进行数据提取和处理

爬虫入门指南(1):学习爬虫的基础知识和技巧

深度学习模型在图像识别中的应用:CIFAR-10数据集实践与准确率分析

Python面向对象编程基础知识和示例代码

MySQL 数据库操作指南:学习如何使用 Python 进行增删改查操作

Python文件操作指南:编码、读取、写入和异常处理

使用Python和Selenium自动化爬取 #【端午特别征文】 探索技术极致,未来因你出“粽” # 的投稿文章

Python多线程与多进程教程:全面解析、代码案例与优化技巧

Selenium自动化工具集 - 完整指南和使用教程

Python网络爬虫基础进阶到实战教程

Python入门教程:掌握for循环、while循环、字符串操作、文件读写与异常处理等基础知识

Pandas数据处理与分析教程:从基础到实战

Python 中常用的数据类型及相关操作详解

【2023年最新】提高分类模型指标的六大方案详解

Python编程入门基础及高级技能、Web开发、数据分析和机器学习与人工智能

用4种回归方法绘制预测结果图表:向量回归、随机森林回归、线性回归、K-最近邻回归

你可能感兴趣的:(python从零出发,python,学习,开发语言,装饰器,从零出发,小白必看)