ThreadPool源码分析

ThreadPoolExecutor

  1. 初始化
        public ThreadPoolExecutor(int corePoolSize,
                              int maximumPoolSize,
                              long keepAliveTime,
                              TimeUnit unit,
                              BlockingQueue workQueue,
                              ThreadFactory threadFactory,
                              RejectedExecutionHandler handler) {
        if (corePoolSize < 0 ||
            maximumPoolSize <= 0 ||
            maximumPoolSize < corePoolSize ||
            keepAliveTime < 0)
            throw new IllegalArgumentException();
        if (workQueue == null || threadFactory == null || handler == null)
            throw new NullPointerException();
        this.acc = System.getSecurityManager() == null ?
                null :
                AccessController.getContext();
        this.corePoolSize = corePoolSize;
        this.maximumPoolSize = maximumPoolSize;
        this.workQueue = workQueue;
        this.keepAliveTime = unit.toNanos(keepAliveTime);
        this.threadFactory = threadFactory;
        this.handler = handler;
    }

一个线程池的参数配置。当一个任务提交进来的时候,会出现以下几种情况:

提交任务线程池的情况 将执行的操作
线程池中线程小于corePoolSize 创建核心线程,执行任务
线程池中的线程已达到corePoolSize,且workQueue未满 将任务提交到workQueue
workQueue已经满 创建临时线程(可创建临时线程的个数maximumPoolSize - corePoolSize);时间配置keepAliveTime、unit是用于回收这些临时线程;
workQueue已满且线程池中线程数已达到maximumPoolSize 执行配置的拒绝策略handler

列出主要的成员变量

//int 低29为用于表示worker个数
    private static final int CAPACITY   = (1 << COUNT_BITS) - 1;
//int 高三位用于表示线程池的状态
    private static final int RUNNING    = -1 << COUNT_BITS;// 111
    private static final int SHUTDOWN   =  0 << COUNT_BITS;// 000
    private static final int STOP       =  1 << COUNT_BITS;// 010
    private static final int TIDYING    =  2 << COUNT_BITS;// 011
    private static final int TERMINATED =  3 << COUNT_BITS;
//ctl中包含了线程池状态和worker个数的信息
    private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));

  1. 提交任务 execute
public void execute(Runnable command) {
//任务为null,抛出空指针异常
        if (command == null)
            throw new NullPointerException();
//c的初始值(线程池处于running状态,worker个数为0)  
        int c = ctl.get();
//线程池中的woker数量小于corePoolSize
        if (workerCountOf(c) < corePoolSize) {
            if (addWorker(command, true))
                return;
            c = ctl.get();
        }
//线程池正在运行,尝试将任务添加到阻塞队列
        if (isRunning(c) && workQueue.offer(command)) {
            int recheck = ctl.get();
            if (! isRunning(recheck) && remove(command))
                reject(command);
            else if (workerCountOf(recheck) == 0)
                addWorker(null, false);
        }
//尝试启动临时线程来执行任务
        else if (!addWorker(command, false))
            reject(command);
    }

尝试添加一个worker线程并启动

//java.util.concurrent.ThreadPoolExecutor.addWorker(Runnable, boolean)
private boolean addWorker(Runnable firstTask, boolean core) {
        retry:
        for (;;) {
            int c = ctl.get();
            int rs = runStateOf(c);

//线程池若状态不是Running,说明不能再提交任务了,直接返回false。
            if (rs >= SHUTDOWN &&
                ! (rs == SHUTDOWN &&
                   firstTask == null &&
                   ! workQueue.isEmpty()))
                return false;

//尝试将worker数量加1,若超出了限制则直接返回false
            for (;;) {
                int wc = workerCountOf(c);
                if (wc >= CAPACITY ||
                    wc >= (core ? corePoolSize : maximumPoolSize))
                    return false;
                if (compareAndIncrementWorkerCount(c))
                    break retry;
                c = ctl.get();  // Re-read ctl
                if (runStateOf(c) != rs)
                    continue retry;
                // else CAS failed due to workerCount change; retry inner loop
            }
        }

//
        boolean workerStarted = false;
        boolean workerAdded = false;
        Worker w = null;
        try {
//初始化一个Worker,这里会通过线程工厂创建线程(Worker自身是Runnable)
            w = new Worker(firstTask);
            final Thread t = w.thread;
            if (t != null) {
                final ReentrantLock mainLock = this.mainLock;
                mainLock.lock();
                try {
//持有锁了后重新检查线程池的状态
                    int rs = runStateOf(ctl.get());

                    if (rs < SHUTDOWN ||
                        (rs == SHUTDOWN && firstTask == null)) {
                        if (t.isAlive()) // precheck that t is startable
                            throw new IllegalThreadStateException();
                        workers.add(w);
                        int s = workers.size();
                        if (s > largestPoolSize)
                            largestPoolSize = s;
                        workerAdded = true;
                    }
                } finally {
                    mainLock.unlock();
                }
                if (workerAdded) {
//若添加worker成功后,这里会启动线程。(调用Worker的run方法)
                    t.start();
                    workerStarted = true;
                }
            }
        } finally {
            if (! workerStarted)
//任务启动失败,会移除worker并修改ctl中worker的计数
                addWorkerFailed(w);
        }
        return workerStarted;
    }

//java.util.concurrent.ThreadPoolExecutor.Worker
//Worker可以看作一个Runnable  
 private final class Worker
        extends AbstractQueuedSynchronizer
        implements Runnable  {
        /** Thread this worker is running in.  Null if factory fails. */
        final Thread thread;
        /** Initial task to run.  Possibly null. */
        Runnable firstTask;
        /** Per-thread task counter */
        volatile long completedTasks;

//通过ThreadFactory来创建一个Thread
        Worker(Runnable firstTask) {
            setState(-1); // inhibit interrupts until runWorker
            this.firstTask = firstTask;
            this.thread = getThreadFactory().newThread(this);
        }

        /** Delegates main run loop to outer runWorker  */
        public void run() {
            runWorker(this);
        }
...
}
  1. 执行任务 runWorker
//java.util.concurrent.ThreadPoolExecutor.runWorker(Worker)
//每个Worker线程的run方法会调用这个方法
final void runWorker(Worker w) {
        Thread wt = Thread.currentThread();
        Runnable task = w.firstTask;
        w.firstTask = null;
        w.unlock(); // allow interrupts
        boolean completedAbruptly = true;
        try {
//这里就体现了线程池的复用,可以执行第一次addWorker是新增的任务。也可以尝试从阻塞队列中获取任务来执行。
            while (task != null || (task = getTask()) != null) {
                w.lock();
                if ((runStateAtLeast(ctl.get(), STOP) ||
                     (Thread.interrupted() &&
                      runStateAtLeast(ctl.get(), STOP))) &&
                    !wt.isInterrupted())
                    wt.interrupt();
                try {
                    beforeExecute(wt, task);
                    Throwable thrown = null;
                    try {
                        task.run();
                    } catch (RuntimeException x) {
                        thrown = x; throw x;
                    } catch (Error x) {
                        thrown = x; throw x;
                    } catch (Throwable x) {
                        thrown = x; throw new Error(x);
                    } finally {
                        afterExecute(task, thrown);
                    }
                } finally {
                    task = null;
//worker无论执行成功还是失败,总是将completedTasks加1
                    w.completedTasks++;
                    w.unlock();
                }
            }
            completedAbruptly = false;
        } finally {
//当线程异常退出(抛出异常),completedAbruptly总是true
            processWorkerExit(w, completedAbruptly);
        }
    }

//java.util.concurrent.ThreadPoolExecutor.processWorkerExit(Worker, boolean)
    private void processWorkerExit(Worker w, boolean completedAbruptly) {
//当Worker执行抛出异常退出时,completedAbruptly一定为true
        if (completedAbruptly) // If abrupt, then workerCount wasn't adjusted
//worker减1
            decrementWorkerCount();

        final ReentrantLock mainLock = this.mainLock;
        mainLock.lock();
        try {
            completedTaskCount += w.completedTasks;
            workers.remove(w);
        } finally {
            mainLock.unlock();
        }

        tryTerminate();

        int c = ctl.get();
        if (runStateLessThan(c, STOP)) {
            if (!completedAbruptly) {
                int min = allowCoreThreadTimeOut ? 0 : corePoolSize;
                if (min == 0 && ! workQueue.isEmpty())
                    min = 1;
                if (workerCountOf(c) >= min)
                    return; // replacement not needed
            }
//线程异常退出,会重新拉起来一个Worker
            addWorker(null, false);
        }
    }

尝试从阻塞队列中获取任务(当此方法返回null会导致Worker线程终止,这也就是变相回收)

//java.util.concurrent.ThreadPoolExecutor.getTask()
    private Runnable getTask() {
        boolean timedOut = false; // Did the last poll() time out?

        for (;;) {
            int c = ctl.get();
            int rs = runStateOf(c);

//shutdown且阻塞队列为空;线程池状态>=STOP(阻塞队列有任务也忽略掉)
            if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {
                decrementWorkerCount();
                return null;
            }

            int wc = workerCountOf(c);

//判断是否需要清理线程
            boolean timed = allowCoreThreadTimeOut || wc > corePoolSize;

            if ((wc > maximumPoolSize || (timed && timedOut))
                && (wc > 1 || workQueue.isEmpty())) {
                if (compareAndDecrementWorkerCount(c))
                    return null;
                continue;
            }

            try {
//从阻塞队列中获取任务
                Runnable r = timed ?
                    workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
                    workQueue.take();
                if (r != null)
                    return r;
                timedOut = true;
            } catch (InterruptedException retry) {
                timedOut = false;
            }
        }
    }

线程池中的状态

状态 描述
RUNNING 运行状态,可以接收新任务,处理阻塞队列中的任务
SHUTDOWN 不接受新提交的任务,会继续处理阻塞队列中的任务;调用shutdown方法线程池会转移到该状态
STOP 不接受新提交的任务,也不再处理阻塞队列中的任务,中断正在执行任务的线程;调用shutdownNow方法线程池会转移到该状态
TIDYING 此时workCount为0,这时会调用terminated方法;当存放任务的阻塞队列和worker线程被清空后,线程池会转移到该状态
TERMINATED terminated方法结束后,线程池会转移到该状态

ScheduledThreadPoolExecutor

scheduleAtFixedRate:周期性的执行任务,任务之间的时间间隔为固定的period
scheduleWithFixedDelay:周期性的执行任务,任务结束和下个任务开始之间会有delay time。

ScheduledThreadPoolExecutor$ScheduledFutureTask#run

        public void run() {
            boolean periodic = isPeriodic();
            if (!canRunInCurrentRunState(periodic))
                cancel(false);
            else if (!periodic)
                ScheduledFutureTask.super.run();
            else if (ScheduledFutureTask.super.runAndReset()) {
                setNextRunTime();
//这里又将task重新put进workQueue,这样就使得task可以周期性的执行。
                reExecutePeriodic(outerTask);
            }
        }

你可能感兴趣的:(ThreadPool源码分析)