神经网络基础2 - 神经网络

什么是神经网络?先上一张图


图片发自App

可以看到神经网络和感知机很像,它由一个输入层、一个输出层和多个隐藏层组成,输入层的神经元对应于感知机的输入,输出层对应于感知机的输出,隐藏层对应于感知机的叠加,它即是上一个感知机的输出,又是下一个感知机的输入。

我们把感知机改造一下,变成下面的形式:
图片发自App

从图中可以看出感知机的输出可以分成两步:

  1. a = w1 * x1 + w2 * x2 + b
  2. y = h(a)

h(a)就是激活函数,在感知机里面, y要么是0,要么是1, h(a)一般被称为阶跃函数

而在神经网络里面,激活函数比较常用的是sigmoid函数,它的定义如下:

h(a) = 1 / (1 - exp(-x))

如果我们把它画在坐标轴上,它长这样:


图片发自App

它和阶跃函数(图中的虚线部分)的区别在于,它把任意一个数变成了0到1之间的一个数。

如果我们把神经网络想象成一个电路,输入 x想象成输入电流,那么感知机就像一个电流开关,它要么让电流通过,要么不让电流通过。使用,它要么让电流通过,要么不让电流通过。使用sigmoid的神经网络就像一个电流调节器,它可以调整电量的大小。

你可能感兴趣的:(神经网络基础2 - 神经网络)