- 【Image captioning-RS】论文12 Prior Knowledge-Guided Transformer for Remote Sensing Image Captioning
CV视界
Imagecaptioning学习transformer深度学习人工智能
1.摘要遥感图像(RSI)字幕生成旨在为遥感图像生成有意义且语法正确的句子描述。然而,相比于自然图像字幕,RSI字幕生成面临着由于RSI特性而产生的额外挑战。第一个挑战源于这些图像中存在大量物体。随着物体数量的增加,确定描述的主要焦点变得越来越困难。此外,RSI中的物体通常外观相似,进一步复杂化了准确描述的生成。为克服这些挑战,我们提出了一种基于先验知识的transformer(PKG-Trans
- Adobe Firefly 技术浅析(三):GANs 的改进
爱研究的小牛
AIGC——图像AIGC—生成对抗网络AIGC机器学习深度学习
生成式对抗网络(GANs)在图像生成领域取得了显著的进展,但原始的GANs在训练稳定性、生成质量以及多样性方面存在一些挑战。AdobeFirefly在其图像生成技术中采用了多种改进的GANs方法,以提高生成图像的质量和多样性。1.条件生成式对抗网络(cGANs)1.1基本原理条件生成式对抗网络(cGANs)通过引入额外的条件信息(如类别标签、文本描述等),使得生成器能够根据这些条件生成特定类型的图
- Transformer架构在生成式AI中的应用解析
二进制独立开发
非纯粹GenAI人工智能transformer架构深度学习机器学习tensorflow迁移学习
文章目录1.Transformer架构概述1.1Transformer的核心思想1.2Transformer架构的优势2.Transformer在文本生成中的应用2.1GPT系列:基于Transformer的自回归文本生成2.2BERT系列:基于Transformer的双向编码器3.Transformer在图像生成中的应用3.1VisionTransformer(ViT)3.2DALL·E:基于T
- Stable Diffusion/DALL-E 3图像生成优化策略
云端源想
stablediffusion
StableDiffusion的最新版本或社区开发的插件,可以补充这些信息以保持内容的时效性。云端源想1.硬件与部署优化(进阶)显存压缩技术使用--medvram或--lowvram启动参数(StableDiffusionWebUI),通过分层加载模型降低显存占用(适合6GB以下显卡)。分块推理(TiledDiffusion):将图像分割为512×512区块,逐块生成后无缝拼接,支持4096×40
- ComfyUI之“注入间隔”(Injection Interval)对生成过程进行控制
AI-AIGC-7744423
计算机视觉人工智能架构
含义“注入间隔”通常指的是在生成图像的过程中,某些特定的控制信号或者参数被注入到生成流程中的时间间隔或者步数间隔。在ComfyUI的图像生成流程里,尤其是使用扩散模型生成图像时,整个过程会被拆分成多个步骤逐步迭代,每一步都会对图像进行一些细微的调整和更新。“注入间隔”决定了在这些步骤中,额外的控制信息(如提示词、控制网等带来的影响)在哪些步骤起作用。具体作用1.控制网(ControlNet)应用当
- ComfyUI 中存在类似于 “蒙版” 的方法
AI-AIGC-7744423
图像处理人工智能
在ComfyUI中存在类似于“蒙版”的方法,它在图像生成和编辑过程中发挥着重要作用,以下为你详细介绍:什么是蒙版及其作用在图像处理领域,蒙版是一种用于控制图像特定区域处理效果的工具。通过蒙版,可以指定哪些区域需要应用某种效果(如滤镜、色彩调整等),哪些区域保持不变。在ComfyUI里,蒙版主要用于控制图像生成或修改的范围。ComfyUI中实现类似蒙版功能的方法1.使用ControlNet的蒙版功能
- AI电商文生图comfyui工作流搭建定制
AI信息官
人工智能
触站AI:AI电商文生图comfyui工作流搭建定制在电商的海洋中,触站AI以其专业comfyui图像生成技术,为品牌打造个性化视觉体验,提升用户界面的舒适度和亲和力。️第一板块:comfyui图像生成系统定制️️定制化服务触站AI提供个性化的comfyui图像生成系统定制服务,确保每个企业都能拥有与其品牌特色和用户需求相匹配的图像生成系统。①品牌一致性——定制系统确保生成的图像与企业品牌风格保持
- Adobe Firefly 技术浅析(二):Transformer生成模型
爱研究的小牛
AIGC——图像transformer深度学习人工智能AIGC机器学习
AdobeFirefly的图像生成技术不仅依赖于生成式对抗网络(GAN),还引入了基于Transformer的生成模型。Transformer模型在处理长距离依赖关系和生成复杂图像结构方面具有显著优势。1.基本原理1.1Transformer模型简介Transformer模型最初由Vaswani等人在2017年提出,用于自然语言处理(NLP)任务。其核心是自注意力机制(Self-Attention
- 大模型“瘦身”革命——模型压缩与加速
大模型应用场景
人工智能开源transformer自然语言处理ai大模型LLM
随着AI大模型(如GPT、BERT、DALL·E等)的崛起,它们在自然语言处理、图像生成等领域的表现令人惊叹。然而,大模型的参数量动辄数十亿甚至上千亿,带来了巨大的计算资源消耗和部署成本。如何在保持模型性能的同时,降低其计算和存储需求,成为了AI领域的热门话题。本文将深入探讨AI大模型的“瘦身”革命——模型压缩与加速技术,帮助开发者高效部署大模型。一、为什么需要模型压缩与加速?AI大模型(如GPT
- 【人工智能基础】生成模型:让数据“无中生有”的神奇魔法
roman_日积跬步-终至千里
#人工智能基础知识人工智能
文章目录一、生成模型的发展脉络二、生成模型的基本原理三、主要生成模型及其逻辑1、生成对抗网络(GAN)2、变分自编码器(VAE)3、扩散模型(DPM)4、基于能量的模型(EBM)5、正规化流(NF)四、生成模型对比分析五、生成模型的应用拓展一、生成模型的发展脉络在深度学习尚未兴起的时期,计算机视觉领域的传统图像生成算法主要依赖纹理合成和纹理映射等技术。这些算法基于手工设计的特征进行图像构建,然而,
- 每日AIGC最新进展(41):上海AI Lab提出新型DiT结构Lumina-Next、Adobe研究院提出图像与文本对齐方法AlignIT、新型多模态图像生成模型MUMU
沉迷单车的追风少年
DiffusionModels与深度学习AIGC人工智能深度学习扩散模型计算机视觉adobe
DiffusionModels专栏文章汇总:入门与实战Lumina-Next:MakingLumina-T2XStrongerandFasterwithNext-DiTLumina-Next是一种新型的生成模型,旨在通过改进的Next-DiT架构、上下文外推技术和快速采样技术,解决前身Lumina-T2X在生成质量和效率上的挑战。该模型通过3DRoPE和三明治归一化等技术,提高了图像和视频生成的稳
- Imagen原理与代码实例讲解
AI天才研究院
计算DeepSeekR1&大数据AI人工智能大模型计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
Imagen原理与代码实例讲解1.背景介绍在人工智能领域中,图像生成一直是一个具有挑战性的任务。传统的计算机视觉模型通常专注于理解和分析现有图像,而生成全新的高质量图像则需要更高级的技术。随着深度学习技术的不断发展,生成式对抗网络(GenerativeAdversarialNetworks,GAN)等新型模型逐渐展现出了令人惊叹的图像生成能力。谷歌的Imagen就是一种基于大型视觉语言模型的全新图
- AI图片创作与图像生成:青花瓷风格的艺术魅力
weixin_58606202
人工智能
青花瓷风格,一个女孩在雨中跳舞青花瓷风格,一朵荷花青花瓷风格,苏州园林青花瓷风格,在蓝色背景上,一只蓝色蝴蝶和白色花朵被放置在中央青花瓷,这一中国传统艺术瑰宝,以其独特的蓝白色调和精美的花纹受到全球欢迎。随科技的发展,AI技术为这一古老艺术形式赋予了新的生命。本文将探讨如何通过AI技术创造出青花瓷风格的图片,从而将传统与现代艺术相结合,并分析这一过程中的艺术魅力与文化意涵。1.青花瓷的艺术特征青花
- AI智能设计平台:AnKo引领未来创作与设计!
gange574
人工智能AI作画AI写作AI聚合AI代运营AI软件AI平台
AI智能设计平台:AnKo引领未来创作与设计!AI智能设计平台带来便捷,AI智能设计平台提高效率,AI智能设计平台助力灵感,AnKo正是AI智能设计平台中的核心。AI智能设计平台真是未来趋势,AI智能设计平台必不可少。AI智能设计平台:强大功能AI智能设计平台让用户能够在一个平台上体验到多种创作模式。无论是图像生成、文字创作还是数据分析,AnKo都能提供相应的工具和服务。AnKo的多模型聚合,使得
- #10 解决Stable Diffusion常见问题和错误
是阿牛啊
AIGCstablediffusion计算机视觉AIAIGC人工智能深度学习
文章目录前言1.环境配置错误问题描述解决方案2.模型加载失败问题描述解决方案3.图像生成质量差问题描述解决方案4.生成速度慢问题描述解决方案5.内存不足错误问题描述解决方案结论前言StableDiffusion是一种先进的AI图像生成工具,它允许用户基于文本描述生成高质量的图片。尽管其强大的功能为用户提供了无限的创造可能,但在使用过程中可能会遇到一些常见的问题和错误。本文将介绍这些问题及其解决方案
- AI绘画工具Stable Diffusion+ComfyUI的配置
AIGC龙哥
AI作画stablediffusiongpt-3文心一言DALL·E2
ComfyUI是一个基于图形用户界面的开源工具,用于搭建和运行复杂的图像生成和处理工作流。它主要围绕使用StableDiffusion模型来生成高质量的图像。这种工具通常允许用户通过拖放不同的模块或节点,定义数据处理和生成流程,然后通过这些流程生成图像。ComfyUI的核心功能包括图形化工作流设计:用户可以通过连接不同的模块或节点(例如,模型加载、图像处理、生成等)来构建自定义的图像生成流程。支持
- 如何用 DeepSeek 进行卷积神经网络(CNN)的优化
一碗黄焖鸡三碗米饭
人工智能前沿与实践cnn人工智能神经网络机器学习深度学习
如何用DeepSeek进行卷积神经网络(CNN)的优化卷积神经网络(CNN)在计算机视觉任务中取得了巨大的成功,例如图像分类、目标检测和图像生成。然而,尽管CNN在这些任务中表现出色,它们通常需要大量的计算资源,并且在优化过程中可能会遇到一些挑战,如过拟合、训练速度慢、局部最优解等问题。为了更好地优化CNN模型,提高其性能和训练效率,DeepSeek提供了多种优化技术和工具,可以帮助我们系统地进行
- Stable Diffusion在中国的生态分析报告
Liudef06
stablediffusion
一、技术演进与产业布局核心技术突破国内企业已深度参与StableDiffusion生态,例如北京灵动天地于2024年8月申请了模型融合专利,通过动态权重插值技术提升生成效果。SD3系列模型(参数规模800M-8B)在中文场景下优化了文本渲染能力,支持1024x1024分辨率图像生成,显存占用显著降低。开源社区中,SDXL0.9版本通过简化提示词需求,实现与MidjourneyV5.2的竞争
- 从机器幻觉到智能幻觉
人机与认知实验室
机器幻觉与智能幻觉主要是关于人工智能(AI)系统在处理信息和生成输出时,可能会产生的错误认知或“幻觉”现象。1.机器幻觉在早期的计算机科学中,“机器幻觉”通常指的是计算机在进行数据处理时,出现了错误的输出或意外的结果。这类“幻觉”并不是指计算机本身具有意识,而是因为程序的设计、数据的不完整性或噪声、或算法的偏差等问题,导致机器产生了不符合现实的假设、错误的结论或奇怪的输出,具体涉及:图像生成幻觉:
- 机器幻觉产生的原因
人机与认知实验室
机器学习人工智能
机器幻觉是指模型生成的不符合现实的内容,比如图像生成中的错误或者不合理的输出。线性函数在神经网络中的作用通常是传递梯度,但如果每一层都是线性的,整个网络就相当于一个单层的线性模型,无法学习复杂的模式。所以如果只有线性层而没有非线性激活函数的话,网络将无法处理复杂任务。对于激活函数而言,常见的如ReLU、sigmoid、tanh。激活函数引入非线性,让网络有能力学习复杂的特征。但是如果没有合适的激活
- comfyui:一张照片变换古风写真,Flux如何做到?
前字节AI绘画师
AIGCComfyui教程AI教程人工智能AI作画ComfyUIAI绘画comfyui工作流图生图AI教程
在AI图像生成的浪潮中,ComfyUI正以一种不可忽视的姿态崭露头角。这款基于StableDiffusion的图像生成工具,为用户打开了一扇通往无限创意的大门。它最大的亮点在于其独特的节点式图形用户界面(GUI)——无需复杂的编程,只需简单的拖拽和配置,就能完成令人惊艳的图像生成。不管你是追求精细创作的专业艺术家,还是刚接触AI绘图的初学者,ComfyUI都像一位贴心的创意助手,让定制化的图像创作
- Farm3D- Learning Articulated 3D Animals by Distilling 2D Diffusion论文笔记
Im Bug
3d论文阅读
Farm3D:LearningArticulated3DAnimalsbyDistilling2DDiffusion1.Introduction最近的研究DreamFusion表明,可以通过text-imagegenerator提取高质量的三维模型,尽管该生成模型并未经过三维训练,但它仍然包含足够的信息以恢复三维形状。在本文中,展示了通过文本-图像生成模型可以获取更多信息,并获得关节模型化的三维对
- GitHub开源数字人项目汇总(2025版)
xinxiyinhe
人工智能虚拟数字人开源github
大家好,今日分享以下是的"GitHub开源数字人项目",涵盖图像生成、语音驱动、直播带货及实时对话等核心功能,按技术方向分类整理的关键信息:一、图像与动态生成类OneShotOneTalk功能:单张图像生成全身动态数字人,支持3D高斯点云与SMPL-X模型结合,实现高精度表情与姿势动画。适用场景:虚拟主持、AI客服。GitHub地址:https://xiangjun-xj.github.io/On
- [AI] [ComfyUI]理解ComyUI的基本原理及其图像生成技术
技术小甜甜
AI探索者人工智能AI作画
ComyUI作为一种图像生成框架,其背后的核心技术基于潜在空间的概念,并通过各种深度学习模块实现高效的图像生成与本地部署。本文将详细探讨ComyUI的基本原理,涵盖其在图像生成中的关键概念,包括潜在空间、VAE模块、噪声处理以及CLIP编码器节点的作用。1.潜在空间的存在与生成效率什么是潜在空间?潜在空间(LatentSpace)是指数据压缩后的低维空间。在图像生成中,潜在空间的引入极大地提高了生
- 《深度剖析:生成对抗网络中生成器与判别器的高效协作之道》
程序猿阿伟
生成对抗网络人工智能机器学习
在人工智能的前沿领域,生成对抗网络(GAN)以其独特的对抗学习机制,为数据生成和处理带来了革命性的变革。生成器与判别器作为GAN的核心组件,它们之间的协作效率直接决定了GAN在图像生成、数据增强、风格迁移等众多应用中的表现。深入探究二者如何实现更高效的协作,不仅是优化GAN性能的关键,也为解锁人工智能更多创新应用场景提供了可能。生成器与判别器:GAN的核心架构解析生成器(Generator)的使命
- 一文读懂 AI 大模型备案:万字详解全流程要点
chuangfumao
人工智能
一、引言在当今数字化时代,AI大模型以其强大的智能处理能力,广泛应用于各个领域,从智能客服到图像生成,从医疗诊断辅助到金融风险预测,大模型正深刻改变着人们的生活和工作方式。然而,随着其影响力的不断扩大,规范管理成为必然需求。AI大模型备案制度应运而生,这一制度对于保障数据安全、保护用户隐私、维护社会稳定和国家安全具有重要意义。它确保大模型在整个生命周期,从开发、训练到部署和应用,都严格遵循相关法律
- Genesis:AI驱动的天空盒深度纹理自动生成工具
羿妍玫Ivan
Genesis:AI驱动的天空盒深度纹理自动生成工具genesis项目地址:https://gitcode.com/gh_mirrors/genesis4/genesis项目介绍Genesis是一个实验性的Unity包,旨在为使用SkyboxLab创建的天空盒自动生成深度纹理。该项目的主要目的是探索当前2D图像生成模型在构建3D世界中的潜力,并为未来的AI辅助游戏开发提供原型工作流程。项目技术分析
- MFLUX: 在Mac上本地运行强大的FLUX模型
2401_87458718
macos
MFLUX简介MFLUX(MacFLUX)是一个基于AppleMLX框架的FLUX模型实现,旨在让用户能够在Mac电脑上本地运行强大的FLUX图像生成模型。FLUX模型由BlackForestLabs开发,是一种先进的文本到图像生成模型。MFLUX的核心理念是保持代码简洁明了,同时优先考虑可读性而非通用性和性能。它是HuggingFaceDiffusers库中FLUX实现的逐行移植版本,使用App
- AIGC:开启内容创作的新纪元
顾漂亮
AIGC
目录引言AIGC是什么基于GANs的AIGC示例AIGC的发展历程AIGC在各领域的应用1.新闻媒体2.艺术创作3.广告营销4.教育领域AIGC的技术实现自然语言生成(NLG)图像生成音频生成AIGC面临的挑战与机遇挑战机遇未来展望引言在当今数字化飞速发展的时代,人工智能已经逐渐渗透到我们生活的方方面面。而AIGC(AI-GeneratedContent,人工智能生成内容)作为人工智能领域的一颗璀
- 多模态论文笔记——DiT(Diffusion Transformer)
好评笔记
多模态论文笔记深度学习transformerDiT人工智能机器学习aigcstablediffusion
大家好,这里是好评笔记,公主号:Goodnote,专栏文章私信限时Free。本文详细介绍Transformer架构图像生成方面的应用,将Diffusion和Transformer结合起来的模型:DiT。目前DiT已经成为了AIGC时代的新宠儿,视频和图像生成不可缺少的一部分。文章目录论文定义架构与传统(U-Net)扩散模型区别架构噪声调度策略与传统扩散的相同输入图像/条件信息的Patch化(Pat
- Java常用排序算法/程序员必须掌握的8大排序算法
cugfy
java
分类:
1)插入排序(直接插入排序、希尔排序)
2)交换排序(冒泡排序、快速排序)
3)选择排序(直接选择排序、堆排序)
4)归并排序
5)分配排序(基数排序)
所需辅助空间最多:归并排序
所需辅助空间最少:堆排序
平均速度最快:快速排序
不稳定:快速排序,希尔排序,堆排序。
先来看看8种排序之间的关系:
1.直接插入排序
(1
- 【Spark102】Spark存储模块BlockManager剖析
bit1129
manager
Spark围绕着BlockManager构建了存储模块,包括RDD,Shuffle,Broadcast的存储都使用了BlockManager。而BlockManager在实现上是一个针对每个应用的Master/Executor结构,即Driver上BlockManager充当了Master角色,而各个Slave上(具体到应用范围,就是Executor)的BlockManager充当了Slave角色
- linux 查看端口被占用情况详解
daizj
linux端口占用netstatlsof
经常在启动一个程序会碰到端口被占用,这里讲一下怎么查看端口是否被占用,及哪个程序占用,怎么Kill掉已占用端口的程序
1、lsof -i:port
port为端口号
[root@slave /data/spark-1.4.0-bin-cdh4]# lsof -i:8080
COMMAND PID USER FD TY
- Hosts文件使用
周凡杨
hostslocahost
一切都要从localhost说起,经常在tomcat容器起动后,访问页面时输入http://localhost:8088/index.jsp,大家都知道localhost代表本机地址,如果本机IP是10.10.134.21,那就相当于http://10.10.134.21:8088/index.jsp,有时候也会看到http: 127.0.0.1:
- java excel工具
g21121
Java excel
直接上代码,一看就懂,利用的是jxl:
import java.io.File;
import java.io.IOException;
import jxl.Cell;
import jxl.Sheet;
import jxl.Workbook;
import jxl.read.biff.BiffException;
import jxl.write.Label;
import
- web报表工具finereport常用函数的用法总结(数组函数)
老A不折腾
finereportweb报表函数总结
ADD2ARRAY
ADDARRAY(array,insertArray, start):在数组第start个位置插入insertArray中的所有元素,再返回该数组。
示例:
ADDARRAY([3,4, 1, 5, 7], [23, 43, 22], 3)返回[3, 4, 23, 43, 22, 1, 5, 7].
ADDARRAY([3,4, 1, 5, 7], "测试&q
- 游戏服务器网络带宽负载计算
墙头上一根草
服务器
家庭所安装的4M,8M宽带。其中M是指,Mbits/S
其中要提前说明的是:
8bits = 1Byte
即8位等于1字节。我们硬盘大小50G。意思是50*1024M字节,约为 50000多字节。但是网宽是以“位”为单位的,所以,8Mbits就是1M字节。是容积体积的单位。
8Mbits/s后面的S是秒。8Mbits/s意思是 每秒8M位,即每秒1M字节。
我是在计算我们网络流量时想到的
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
Spring 3 系列
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- 高性能mysql 之 选择存储引擎(一)
annan211
mysqlInnoDBMySQL引擎存储引擎
1 没有特殊情况,应尽可能使用InnoDB存储引擎。 原因:InnoDB 和 MYIsAM 是mysql 最常用、使用最普遍的存储引擎。其中InnoDB是最重要、最广泛的存储引擎。她 被设计用来处理大量的短期事务。短期事务大部分情况下是正常提交的,很少有回滚的情况。InnoDB的性能和自动崩溃 恢复特性使得她在非事务型存储的需求中也非常流行,除非有非常
- UDP网络编程
百合不是茶
UDP编程局域网组播
UDP是基于无连接的,不可靠的传输 与TCP/IP相反
UDP实现私聊,发送方式客户端,接受方式服务器
package netUDP_sc;
import java.net.DatagramPacket;
import java.net.DatagramSocket;
import java.net.Ine
- JQuery对象的val()方法执行结果分析
bijian1013
JavaScriptjsjquery
JavaScript中,如果id对应的标签不存在(同理JAVA中,如果对象不存在),则调用它的方法会报错或抛异常。在实际开发中,发现JQuery在id对应的标签不存在时,调其val()方法不会报错,结果是undefined。
- http请求测试实例(采用json-lib解析)
bijian1013
jsonhttp
由于fastjson只支持JDK1.5版本,因些对于JDK1.4的项目,可以采用json-lib来解析JSON数据。如下是http请求的另外一种写法,仅供参考。
package com;
import java.util.HashMap;
import java.util.Map;
import
- 【RPC框架Hessian四】Hessian与Spring集成
bit1129
hessian
在【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中介绍了基于Hessian的RPC服务的实现步骤,在那里使用Hessian提供的API完成基于Hessian的RPC服务开发和客户端调用,本文使用Spring对Hessian的集成来实现Hessian的RPC调用。
定义模型、接口和服务器端代码
|---Model
&nb
- 【Mahout三】基于Mahout CBayes算法的20newsgroup流程分析
bit1129
Mahout
1.Mahout环境搭建
1.下载Mahout
http://mirror.bit.edu.cn/apache/mahout/0.10.0/mahout-distribution-0.10.0.tar.gz
2.解压Mahout
3. 配置环境变量
vim /etc/profile
export HADOOP_HOME=/home
- nginx负载tomcat遇非80时的转发问题
ronin47
nginx负载后端容器是tomcat(其它容器如WAS,JBOSS暂没发现这个问题)非80端口,遇到跳转异常问题。解决的思路是:$host:port
详细如下:
该问题是最先发现的,由于之前对nginx不是特别的熟悉所以该问题是个入门级别的:
? 1 2 3 4 5
- java-17-在一个字符串中找到第一个只出现一次的字符
bylijinnan
java
public class FirstShowOnlyOnceElement {
/**Q17.在一个字符串中找到第一个只出现一次的字符。如输入abaccdeff,则输出b
* 1.int[] count:count[i]表示i对应字符出现的次数
* 2.将26个英文字母映射:a-z <--> 0-25
* 3.假设全部字母都是小写
*/
pu
- mongoDB 复制集
开窍的石头
mongodb
mongo的复制集就像mysql的主从数据库,当你往其中的主复制集(primary)写数据的时候,副复制集(secondary)会自动同步主复制集(Primary)的数据,当主复制集挂掉以后其中的一个副复制集会自动成为主复制集。提供服务器的可用性。和防止当机问题
mo
- [宇宙与天文]宇宙时代的经济学
comsci
经济
宇宙尺度的交通工具一般都体型巨大,造价高昂。。。。。
在宇宙中进行航行,近程采用反作用力类型的发动机,需要消耗少量矿石燃料,中远程航行要采用量子或者聚变反应堆发动机,进行超空间跳跃,要消耗大量高纯度水晶体能源
以目前地球上国家的经济发展水平来讲,
- Git忽略文件
Cwind
git
有很多文件不必使用git管理。例如Eclipse或其他IDE生成的项目文件,编译生成的各种目标或临时文件等。使用git status时,会在Untracked files里面看到这些文件列表,在一次需要添加的文件比较多时(使用git add . / git add -u),会把这些所有的未跟踪文件添加进索引。
==== ==== ==== 一些牢骚
- MySQL连接数据库的必须配置
dashuaifu
mysql连接数据库配置
MySQL连接数据库的必须配置
1.driverClass:com.mysql.jdbc.Driver
2.jdbcUrl:jdbc:mysql://localhost:3306/dbname
3.user:username
4.password:password
其中1是驱动名;2是url,这里的‘dbna
- 一生要养成的60个习惯
dcj3sjt126com
习惯
一生要养成的60个习惯
第1篇 让你更受大家欢迎的习惯
1 守时,不准时赴约,让别人等,会失去很多机会。
如何做到:
①该起床时就起床,
②养成任何事情都提前15分钟的习惯。
③带本可以随时阅读的书,如果早了就拿出来读读。
④有条理,生活没条理最容易耽误时间。
⑤提前计划:将重要和不重要的事情岔开。
⑥今天就准备好明天要穿的衣服。
⑦按时睡觉,这会让按时起床更容易。
2 注重
- [介绍]Yii 是什么
dcj3sjt126com
PHPyii2
Yii 是一个高性能,基于组件的 PHP 框架,用于快速开发现代 Web 应用程序。名字 Yii (读作 易)在中文里有“极致简单与不断演变”两重含义,也可看作 Yes It Is! 的缩写。
Yii 最适合做什么?
Yii 是一个通用的 Web 编程框架,即可以用于开发各种用 PHP 构建的 Web 应用。因为基于组件的框架结构和设计精巧的缓存支持,它特别适合开发大型应
- Linux SSH常用总结
eksliang
linux sshSSHD
转载请出自出处:http://eksliang.iteye.com/blog/2186931 一、连接到远程主机
格式:
ssh name@remoteserver
例如:
ssh
[email protected]
二、连接到远程主机指定的端口
格式:
ssh name@remoteserver -p 22
例如:
ssh i
- 快速上传头像到服务端工具类FaceUtil
gundumw100
android
快速迭代用
import java.io.DataOutputStream;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOExceptio
- jQuery入门之怎么使用
ini
JavaScripthtmljqueryWebcss
jQuery的强大我何问起(个人主页:hovertree.com)就不用多说了,那么怎么使用jQuery呢?
首先,下载jquery。下载地址:http://hovertree.com/hvtart/bjae/b8627323101a4994.htm,一个是压缩版本,一个是未压缩版本,如果在开发测试阶段,可以使用未压缩版本,实际应用一般使用压缩版本(min)。然后就在页面上引用。
- 带filter的hbase查询优化
kane_xie
查询优化hbaseRandomRowFilter
问题描述
hbase scan数据缓慢,server端出现LeaseException。hbase写入缓慢。
问题原因
直接原因是: hbase client端每次和regionserver交互的时候,都会在服务器端生成一个Lease,Lease的有效期由参数hbase.regionserver.lease.period确定。如果hbase scan需
- java设计模式-单例模式
men4661273
java单例枚举反射IOC
单例模式1,饿汉模式
//饿汉式单例类.在类初始化时,已经自行实例化
public class Singleton1 {
//私有的默认构造函数
private Singleton1() {}
//已经自行实例化
private static final Singleton1 singl
- mongodb 查询某一天所有信息的3种方法,根据日期查询
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
// mongodb的查询真让人难以琢磨,就查询单天信息,都需要花费一番功夫才行。
// 第一种方式:
coll.aggregate([
{$project:{sendDate: {$substr: ['$sendTime', 0, 10]}, sendTime: 1, content:1}},
{$match:{sendDate: '2015-
- 二维数组转换成JSON
tangqi609567707
java二维数组json
原文出处:http://blog.csdn.net/springsen/article/details/7833596
public class Demo {
public static void main(String[] args) { String[][] blogL
- erlang supervisor
wudixiaotie
erlang
定义supervisor时,如果是监控celuesimple_one_for_one则删除children的时候就用supervisor:terminate_child (SupModuleName, ChildPid),如果shutdown策略选择的是brutal_kill,那么supervisor会调用exit(ChildPid, kill),这样的话如果Child的behavior是gen_