LLM学习《Prompt Engineering for Developer》

Prompt

如何构造好的Prompt

  1. 分割符:分隔符就像是 Prompt 中的墙,将不同的指令、上下文、输入隔开,避免意外的混淆。你可以选择用 ```,“”",< >, ,: 等做分隔符,只要能明确起到隔断作用即可。
from tool import get_completion

text = f"""
您应该提供尽可能清晰、具体的指示,以表达您希望模型执行的任务。\
这将引导模型朝向所需的输出,并降低收到无关或不正确响应的可能性。\
不要将写清晰的提示词与写简短的提示词混淆。\
在许多情况下,更长的提示词可以为模型提供更多的清晰度和上下文信息,从而导致更详细和相关的输出。
"""
# 需要总结的文本内容
prompt = f"""
把用三个反引号括起来的文本总结成一句话。
```{text}```
"""
# 指令内容,使用 ```来分隔指令和待总结的内容
response = get_completion(prompt)
print(response)

  1. 寻求结构化的输出。按照某种格式组织的内容,例如JSON、HTML等。这种输出非常适合在代码中进一步解析和处理。例如,您可以在 Python 中将其读入字典或列表中。
  • 在以下示例中,我们要求 GPT 生成三本书的标题、作者和类别,并要求 GPT 以 JSON 的格式返回给我们,为便于解析,我们指定了 Json 的键。
prompt = f"""
请生成包括书名、作者和类别的三本虚构的、非真实存在的中文书籍清单,\
并以 JSON 格式提供,其中包含以下键:book_id、title、author、genre。
"""
response = get_completion(prompt)
print(response)

  • 返回值
{
  "books": [
    {
      "book_id": 1,
      "title": "迷失的时光",
      "author": "张三",
      "genre": "科幻"
    },
    {
      "book_id": 2,
      "title": "幻境之门",
      "author": "李四",
      "genre": "奇幻"
    },
    {
      "book_id": 3,
      "title": "虚拟现实",
      "author": "王五",
      "genre": "科幻"
    }
  ]
}

  1. 要求模型检查是否满足条件
# 满足条件的输入(text中提供了步骤)
text_1 = f"""
泡一杯茶很容易。首先,需要把水烧开。\
在等待期间,拿一个杯子并把茶包放进去。\
一旦水足够热,就把它倒在茶包上。\
等待一会儿,让茶叶浸泡。几分钟后,取出茶包。\
如果您愿意,可以加一些糖或牛奶调味。\
就这样,您可以享受一杯美味的茶了。
"""
prompt = f"""
您将获得由三个引号括起来的文本。\
如果它包含一系列的指令,则需要按照以下格式重新编写这些指令:

第一步 - ...
第二步 - …
…
第N步 - …

如果文本中不包含一系列的指令,则直接写“未提供步骤”。"
\"\"\"{text_1}\"\"\"
"""
response = get_completion(prompt)
print("Text 1 的总结:")
print(response)

Text 1 的总结:
第一步 - 把水烧开。
第二步 - 拿一个杯子并把茶包放进去。
第三步 - 把烧开的水倒在茶包上。
第四步 - 等待几分钟,让茶叶浸泡。
第五步 - 取出茶包。
第六步 - 如果需要,加入糖或牛奶调味。
第七步 - 就这样,您可以享受一杯美味的茶了。

  1. 提供少量示例。“Few-shot” prompting,即在要求模型执行实际任务之前,给模型一两个已完成的样例,让模型了解我们的要求和期望的输出样式。
prompt = f"""
您的任务是以一致的风格回答问题。

<孩子>: 请教我何为耐心。

<祖父母>: 挖出最深峡谷的河流源于一处不起眼的泉眼;最宏伟的交响乐从单一的音符开始;最复杂的挂毯以一根孤独的线开始编织。

<孩子>: 请教我何为韧性。
"""
response = get_completion(prompt)
print(response)

  1. 指定回答的步骤和格式。
prompt_2 = f"""
1-用一句话概括下面用<>括起来的文本。
2-将摘要翻译成英语。
3-在英语摘要中列出每个名称。
4-输出一个 JSON 对象,其中包含以下键:English_summary,num_names。

请使用以下格式:
文本:<要总结的文本>
摘要:<摘要>
翻译:<摘要的翻译>
名称:<英语摘要中的名称列表>
输出 JSON:<带有 English_summary 和 num_names 的 JSON>

Text: <{text}>
"""
response = get_completion(prompt_2)
print("\nprompt 2:")
print(response)

幻觉问题

  • 虚假知识:模型偶尔会生成一些看似真实实则编造的知识
  • 在开发与应用语言模型时,需要注意它们可能生成虚假信息的风险。尽管模型经过大规模预训练,掌握了丰富知识,但它实际上并没有完全记住所见的信息,难以准确判断自己的知识边界,可能做出错误推断。若让语言模型描述一个不存在的产品,它可能会自行构造出似是而非的细节。这被称为“幻觉”(Hallucination),是语言模型的一大缺陷。

如何解决幻觉问题?

  1. Prompt中加入限制词
  2. 外挂知识库

迭代优化

Prompt 开发也采用类似循环迭代的方式,逐步逼近最优。具体来说,有了任务想法后,可以先编写初版 Prompt,注意清晰明确并给模型充足思考时间。运行后检查结果,如果不理想,则分析 Prompt 不够清楚或思考时间不够等原因,做出改进,再次运行。如此循环多次,终将找到适合应用的 Prompt。

  1. 优化提示:直接加入长度限制词,使用最多50个词

    • 当在 Prompt 中设置长度限制要求时,语言模型生成的输出长度不总能精确符合要求,但基本能控制在可接受的误差范围内。比如要求生成50词的文本,语言模型有时会生成60词左右的输出,但总体接近预定长度。
    • 这是因为语言模型在计算和判断文本长度时依赖于分词器,而分词器在字符统计方面不具备完美精度。目前存在多种方法可以尝试控制语言模型生成输出的长度,比如指定语句数、词数、汉字数等。
  2. 根据回复,不断的增加限制词。

  3. 可以让模型返回表格。

文本摘要

多条文本:放在一个list里面,然后for遍历

reviews = [review_1, review_2, review_3, review_4]

for i in range(len(reviews)):
    prompt = f"""
    你的任务是从电子商务网站上的产品评论中提取相关信息。

    请对三个反引号之间的评论文本进行概括,最多20个词汇。

    评论文本: ```{reviews[i]}```
    """
    response = get_completion(prompt)
    print(f"评论{i+1}: ", response, "\n")

文本转换

下面是一个示例,展示了如何使用一个Prompt,同时对一段文本进行翻译、拼写纠正、语气调整和格式转换等操作。

prompt = f"""
针对以下三个反引号之间的英文评论文本,
首先进行拼写及语法纠错,
然后将其转化成中文,
再将其转化成优质淘宝评论的风格,从各种角度出发,分别说明产品的优点与缺点,并进行总结。
润色一下描述,使评论更具有吸引力。
输出结果格式为:
【优点】xxx
【缺点】xxx
【总结】xxx
注意,只需填写xxx部分,并分段输出。
将结果输出成Markdown格式。
```{text}```
"""
response = get_completion(prompt)
display(Markdown(response))

温度系数

  • 大语言模型中的 “温度”(temperature) 参数可以控制生成文本的随机性和多样性。temperature 的值越大,语言模型输出的多样性越大;temperature 的值越小,输出越倾向高概率的文本。
# 第一次运行
prompt = f"""
你是一名客户服务的AI助手。
你的任务是给一位重要的客户发送邮件回复。
根据通过“```”分隔的客户电子邮件生成回复,以感谢客户的评价。
如果情感是积极的或中性的,感谢他们的评价。
如果情感是消极的,道歉并建议他们联系客户服务。
请确保使用评论中的具体细节。
以简明和专业的语气写信。
以“AI客户代理”的名义签署电子邮件。
客户评价:```{review}```
评论情感:{sentiment}
"""
response = get_completion(prompt, temperature=0.7)
print(response)

聊天机器人

大型语言模型带给我们的激动人心的一种可能性是,我们可以通过它构建定制的聊天机器人(Chatbot),而且只需很少的工作量。在这一章节的探索中,我们将带你了解如何利用会话形式,与具有个性化特性(或专门为特定任务或行为设计)的聊天机器人进行深度对话。

  • 单轮对话:即 get_completion ,其适用于单轮对话。我们将 Prompt 放入某种类似用户消息的对话框中
  • get_completion_from_messages ,传入一个消息列表。这些消息可以来自大量不同的角色 (roles) ,我们会描述一下这些角色。
import openai

# 下文第一个函数即tool工具包中的同名函数,此处展示出来以便于读者对比
def get_completion(prompt, model="gpt-3.5-turbo"):
    messages = [{"role": "user", "content": prompt}]
    response = openai.ChatCompletion.create(
        model=model,
        messages=messages,
        temperature=0, # 控制模型输出的随机程度
    )
    return response.choices[0].message["content"]

def get_completion_from_messages(messages, model="gpt-3.5-turbo", temperature=0):
    response = openai.ChatCompletion.create(
        model=model,
        messages=messages,
        temperature=temperature, # 控制模型输出的随机程度
    )
#     print(str(response.choices[0].message))
    return response.choices[0].message["content"]

  • 问答
# 中文
messages =  [  
{'role':'system', 'content':'你是一个像莎士比亚一样说话的助手。'},    
{'role':'user', 'content':'给我讲个笑话'},   
{'role':'assistant', 'content':'鸡为什么过马路'},   
{'role':'user', 'content':'我不知道'}  ]

response = get_completion_from_messages(messages, temperature=1)
print(response)

  • 上下文提示
# 中文
messages =  [  
{'role':'system', 'content':'你是个友好的聊天机器人。'},
{'role':'user', 'content':'Hi, 我是Isa'},
{'role':'assistant', 'content': "Hi Isa! 很高兴认识你。今天有什么可以帮到你的吗?"},
{'role':'user', 'content':'是的,你可以提醒我, 我的名字是什么?'}  ]
response = get_completion_from_messages(messages, temperature=1)
print(response)

订餐机器人

  • 这个机器人将被设计为自动收集用户信息,并接收来自比萨饼店的订单
def collect_messages(_):
	# panels 就是记录上下文对话,pn.Row()
    prompt = inp.value_input
    inp.value = ''
    context.append({'role':'user', 'content':f"{prompt}"})
    response = get_completion_from_messages(context) 
    context.append({'role':'assistant', 'content':f"{response}"})
    panels.append(
        pn.Row('User:', pn.pane.Markdown(prompt, width=600)))
    panels.append(
        pn.Row('Assistant:', pn.pane.Markdown(response, width=600, style={'background-color': '#F6F6F6'})))
 
    return pn.Column(*panels)

这个函数将收集我们的用户消息,以便我们可以避免像刚才一样手动输入。这个函数将从我们下面构建的用户界面中收集 Prompt ,然后将其附加到一个名为上下文( context )的列表中,并在每次调用模型时使用该上下文。模型的响应也会添加到上下文中,所以用户消息和模型消息都被添加到上下文中,上下文逐渐变长。这样,模型就有了需要的信息来确定下一步要做什么。

你可能感兴趣的:(学习,prompt,人工智能,深度学习)