分水岭分割:图像处理中常用的一种分割方法,它基于图像中灰度或颜色的变化来划分不同的区域。分水岭分割算法的原理是基于地理学上的分水岭概念。将图像看作一个地貌图,在图像中低洼的部分被看作水池,而高处则表示山脉。通过在图像中加入水并让其逐渐充满,当水位上升到高峰时,不同山脉之间的低洼部分就形成了分割边界。其算法步骤如下
分水岭分割方法在图像处理领域有着广泛的应用,特别适用于复杂背景下的目标提取和图像分割任务。但它也存在一些问题,例如对噪声敏感,容易产生过分割或欠分割等情况,因此在实际应用中需要结合其他方法进行改进和优化
如下图
matlab实现:
clear,clc,close all;
image=im2double(rgb2gray(imread('bricks.jpg')));
figure,imshow(image),title('原图');
hv=fspecial('prewitt');
hh=hv.';
gv=abs(imfilter(image,hv,'replicate'));
gh=abs(imfilter(image,hh,'replicate'));
% g=sqrt(gv.^2+gh.^2);
g=abs(gv)+abs(gh);
figure,imshow(g),title('梯度图像');
L=watershed(g);
wr=L==0;
figure,imshow(wr),title('分水岭');
image(wr)=0;
figure,imshow(image),title('分割结果');
% imwrite(g,'watergrad.jpg');
% imwrite(wr,'fenshuiling.jpg');
% imwrite(image,'waterresult.jpg');
import numpy as np
import cv2
import matplotlib.pyplot as plt
# 读取图像
image = cv2.imread('bricks.jpg')
image_gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
image_gray = image_gray.astype(np.float64) / 255.0
# 显示原图
plt.figure()
plt.imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
plt.title('原图')
# 计算梯度
hx = cv2.Sobel(image_gray, cv2.CV_64F, 1, 0, ksize=3)
hy = cv2.Sobel(image_gray, cv2.CV_64F, 0, 1, ksize=3)
gx = np.abs(hx)
gy = np.abs(hy)
gradient = gx + gy
# 显示梯度图像
plt.figure()
plt.imshow(gradient, cmap='gray')
plt.title('梯度图像')
# 分水岭分割
ret, markers = cv2.connectedComponents(cv2.threshold(np.uint8(gradient * 255), 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1])
markers = markers + 1
markers[gradient == 0] = 0
labels = cv2.watershed(image, markers)
segmented = image.copy()
segmented[labels == -1] = [0, 0, 255]
# 显示分水岭结果
plt.figure()
plt.imshow(cv2.cvtColor(segmented, cv2.COLOR_BGR2RGB))
plt.title('分割结果')
plt.show()
要求:将答题卡分割成不同区域。采用所学基础处理方法实现题目要求
操作:
主程序
几何校正
裁切
信息区域分割:通过检测边缘来进行分割:canny边缘检测、边缘滤波、边界修复和区域定位四个步骤
答题区分割
clear,clc,close all;
RGB=im2double(imread('card1.jpg'));
figure,imshow(RGB),title('原图');
adjustI=correction(RGB);
figure,imshow(adjustI),title('几何校正结果图');
[cropIu,cropId]=crop(adjustI);
rectup(cropIu);
rectdown(cropId);
function out=correction(in)
bw=prepro(in);
lines=linedetect(bw,2);
line1=[lines(1).point1;lines(1).point2];
line2=[lines(2).point1;lines(2).point2];
angle1=abs(atan((line1(2,2)-line1(1,2))/(line1(2,1)-line1(1,1)))*180/pi);
angle2=abs(atan((line2(2,2)-line2(1,2))/(line2(2,1)-line2(1,1)))*180/pi);
if angle1<angle2
temp=angle1;
angle1=angle2;
angle2=temp;
temp=line1;
line1=line2;
line2=temp;
end
first=line1(1,:); second=line1(2,:); third=line2(1,:); fourth=line2(2,:);
input_points=[first;second;third;fourth];
first(2)=(first(2)+second(2))/2; second(2)=first(2);
third(1)=first(1); fourth(1)=second(1);
third(2)=(third(2)+fourth(2))/2; fourth(2)=third(2);
base_points=[first;second;third;fourth];
tform=cp2tform(input_points,base_points,'projective');
out=1-in(:,:,:);
out=imtransform(out,tform);
out(:,:,:)=1-out(:,:,:);
end
function out=prepro(in)
bw=1-imbinarize(rgb2gray(in));
se=strel('square',2);
out=imopen(bw,se);
end
function [lines,width]=linedetect(bw,n)
[B,L]=bwboundaries(bw);
[N,M]=size(bw);
STATS=regionprops(L,'MajorAxisLength','MinorAxisLength');%统计几何特征
len=length(STATS);
for i=1:len
if STATS(i).MajorAxisLength<M/2 || STATS(i).MinorAxisLength>10
L(L==i)=0;
end
end
L(L~=0)=1;
[B,L]=bwboundaries(L);
STATS=regionprops(L,'MinorAxisLength');%统计几何特征
len=length(STATS);
width=0;
for i=1:len
width=width+STATS(i).MinorAxisLength;
end
width=width/len;
[h,theta,rho]=hough(L,'RhoResolution',0.5,'ThetaResolution',0.5);
P=houghpeaks(h,n);
lines=houghlines(L,theta,rho,P);
end
function [out1,out2]=crop(in)
gray=1-rgb2gray(in);
sumy=sum(gray,2);
sumx=sum(gray);
avery=mean(sumy);
averx=mean(sumx);
posy=find(sumy>avery);
posx=find(sumx>averx);
[C,maxx]=max(sumx);
out=in(posy(1)-3:posy(end),posx(1)-3:maxx,:);
bw=prepro(out);
[N,M]=size(bw);
[lines,width]=linedetect(bw,2);
line1=[lines(1).point1;lines(1).point2];
line2=[lines(2).point1;lines(2).point2];
if line1(1,2)>line2(1,2)
temp=line1;
line1=line2;
line2=temp;
end
left=1;
right=(line1(2,1)+line2(2,1))/2;
right=floor(right+(M-right)*2/3);
top=1;
middle=(line1(1,2)+line1(2,2))/2;
bottom=floor((line2(1,2)+line2(2,2))/2-width);
out1=out(top:middle-width,left:right,:);
out2=out(middle+width/2:bottom,left:right,:);
end
function out=rectup(in)
out=imresize(in,2,'bilinear');
gray=rgb2gray(out);
bw=edge(gray,'canny');
[B,L]=bwboundaries(bw);
STATS=regionprops(L,'MajorAxisLength');%统计几何特征
len=length(STATS);
[N,M]=size(gray);
for i=1:len
if STATS(i).MajorAxisLength<M/8
bw(L==i)=0;
end
end
bw=restore(bw);
bw=imfill(bw,'holes');
se=strel('square',3);
bw=imopen(bw,se);
[B,L]=bwboundaries(bw);
STATS=regionprops(L,'BoundingBox');%统计几何特征
len=length(STATS);
figure,imshow(out),title('个人信息区定位');
hold on;
for i=1:len
rect=STATS(i).BoundingBox;
rectangle('position',rect,'edgecolor','b');
end
end
function out=restore(in)
[N,M]=size(in);
for x=2:M-1
for y=2:N-1
i=x; j=y;
while j<=N-1 && i<=M-1 && i>=2 && j>=2 && in(j,i)~=0
neighbor=[in(j-1,i-1) in(j-1,i) in(j-1,i+1) in(j,i-1) in(j,i+1) in(j+1,i-1) in(j+1,i) in(j+1,i+1)];
pos=find(neighbor~=0);
if size(pos)==1
switch pos(1)
case 1
i=i+1;j=j+1;
case 2
j=j+1;
case 3
i=i-1;j=j+1;
case 4
i=i+1;
case 5
i=i-1;
case 6
i=i+1;j=j-1;
case 7
j=j-1;
case 8
i=i-1;j=j-1;
end
in(j,i)=1;
else
break;
end
end
end
end
out=in;
end
function out=rectdown(in)
hsv=rgb2hsv(in);
s=hsv(:,:,2);
v=hsv(:,:,3);
[N,M]=size(v);
sbw=imbinarize(s);
se=strel('disk',3);
sbw=imopen(sbw,se);
[B,L]=bwboundaries(sbw);
STATS=regionprops(L,'Area','BoundingBox');
len=length(STATS);
area=[];
for i=1:len
area=[area;STATS(i).Area];
end
[Y,Index]=sort(abs(area),'descend');
if len>3
count=3;
else
count=len;
end
for i=1:count
rect=STATS(Index(i)).BoundingBox;
v(rect(2):rect(2)+rect(4),rect(1):rect(1)+rect(3))=v(1,1);
end
vbw=edge(v,'canny');
[B,L]=bwboundaries(vbw);
STATS=regionprops(L,'Area','MajorAxisLength','MinorAxisLength');%统计几何特征
len=length(STATS);
for i=1:len
if STATS(i).MajorAxisLength>M/16 || STATS(i).MinorAxisLength<3 || STATS(i).Area<10
L(L==i)=0;
end
end
L(L~=0)=1;
se=strel('line',M/25,0);
L=imclose(L,se);
se=strel('line',N/35,90);
L=imclose(L,se);
se=strel('square',3);
L=imopen(L,se);
L=imfill(L,'holes');
[B,L]=bwboundaries(L);
STATS=regionprops(L,'BoundingBox');%统计几何特征
len=length(STATS);
figure,imshow(in),title('答题区定位');
hold on;
for i=1:len
rect=STATS(i).BoundingBox;
rectangle('position',rect,'edgecolor','b');
end
end