文本标注技术方案(NLP标注工具)

Doccano

doccano 是一个面向人类的开源文本注释工具。它为文本分类、序列标记和序列到序列任务提供注释功能。您可以创建用于情感分析、命名实体识别、文本摘要等的标记数据。只需创建一个项目,上传数据,然后开始注释。您可以在数小时内构建数据集。

支持命名实体识别,情感分类,机器翻译任务,界面比较友好。

  • 当前公司私有化部署的地址:(当前挂掉了,后端处理中)
  • git:https://github.com/doccano/doccano

技术方案

前端:vue2 + nuxt

后端:python

技术难点

  1. 标注工具编辑器部分组件

文本标注技术方案(NLP标注工具)_第1张图片

功能:

  • 支持标注 Label
  • 支持关系 Relation

开源组件:

  • vue 组件:
    • https://www.npmjs.com/package/v-annotator
    • https://github.com/doccano/v-annotator/blob/master/package.json
    • demo:https://github.com/doccano/doccano/blob/93cfd52924378bd2c8e109fff2b072199ff2e8bc/frontend/pages/demo/named-entity-recognition/index.vue


 
  • react 组件

https://github.com/microsoft/react-text-annotator

当前看 v-annotator 是 doccanno 封装的一个组件,react 这个组件要分析一下是不是支持当前的特性

文本标注技术方案(NLP标注工具)_第2张图片

代码如下:

import {AnnotationData, Labeler} from 'react-text-annotator'

const HomePage: React.FC = () => {
  const annotations: AnnotationData[] = [
    {
        id: 'id1',
        color: 'red',
        endToken: 5,
        startToken: 0,
        name: 'label111111',
        kind: 'label',
        onClick:(e) => {
          console.log(e);
        },
        level: 1,// 设置层级
        onRenderTooltip: (e) =><>label111111
    },{
      id: 'id1',
      color: 'green',
      endToken: 5,
      startToken: 1,
      name: 'label222222',
      kind: 'label',
      onRenderTooltip: (e) =><>label222222
  },
    {
        id: 'id2',
        color: 'blue',
        endToken: 25,
        startToken: 10,
        name: 'relation',
        kind: 'relation',
        
    }
];

const labelerText = 'This is sample text to test the labeler functionality.';


return <>
  
;
};

export default HomePage;

下面的了解即可

YEDDA:(2016)(python)

优点是安装方便,程序很小,标注方便,如果要实现给同一个实体加多个标签,也可以实现。最大标签数8,界面也还过的去。

YEDDA(以前的 SUTDAnnotator)是为在文本(几乎所有语言,包括英语、中文)、符号甚至表情符号上注释块/实体/事件而开发的。它支持快捷注释,对于手动注释文本非常有效。用户只需选择文本范围并按快捷键,该范围就会自动注释。它还支持命令注释模型,可以批量注释多个实体,并支持将注释文本导出为序列文本。此外,更新版本还增加了智能推荐和管理员分析。它兼容所有主流操作系统,包括Windows、Linux和MacOS。

https://github.com/jiesutd/YEDDA

python

Prodigy(2017):

Prodigy 是一种现代注释工具, 用于为机器学习模型创建训练和评估数据。您还可以使用 Prodigy 来帮助您检查和清理数据、进行错误分析以及开发基于规则的系统以与统计模型结合使用。

https://prodi.gy/docs/

Python library

Chinese-Annotator:(2017)

基于prodigy的中文标注工具

https://github.com/deepwel/Chinese-Annotator

demo:https://demo.prodi.gy/?=null&view_id=textcat

技术方案:

  • vue2 element
  • Python

Brat:(2010)

支持实体、关系、事件抽取的标注。可以标注情感。

优点在标注实体的同时可以进行关系标注,还可以实现二级标注。

brat rapid annotation tool

GitHub - nlplab/brat: brat rapid annotation tool (brat) - for all your textual annotation needs

技术方案

  • jq
  • Python

IEPY

主要用来信息抽取和关系抽取任务

https://github.com/machinalis/iepy

DeepDive

主要用来关系抽取任务,17就停止更新了

http://deepdive.stanford.edu/#documentation

个人小结

大致可以选用Brat,Doccano,YEDDA,Prodigy试一下,选用Brat是因为有现成的中文情感标注,还有Brat有关系标注,选用Doccano是它的页面很友好,而且可添加的标签数也比较多,选用YEDDA是它完全用Python桌面开发且支持中文,选用Prodigy是因为支持标注的功能最全。

文本标注技术方案(NLP标注工具)_第3张图片

中文分词工具(分词工具有的也可以做命名实体识别和词性标注,可以去看看)

中科院计算所NLPIR http://ictclas.nlpir.org/nlpir/

ansj分词器 https://github.com/NLPchina/ansj_seg

哈工大的LTP https://github.com/HIT-SCIR/ltp

清华大学THULAC https://github.com/thunlp/THULAC

斯坦福分词器 https://nlp.stanford.edu/software/segmenter.shtml

Hanlp分词器 https://github.com/hankcs/HanLP

结巴分词 https://github.com/yanyiwu/cppjieba

KCWS分词器(字嵌入+Bi-LSTM+CRF) https://github.com/koth/kcws

ZPar https://github.com/frcchang/zpar/releases

IKAnalyzer https://github.com/wks/ik-analy

你可能感兴趣的:(自然语言处理,人工智能)