Python随机森林、线性回归对COVID-19疫情、汇率数据预测死亡率、病例数、失业率影响可视化

全文链接:https://tecdat.cn/?p=33536

原文出处:拓端数据部落公众号

自2019年12月以来,传染性冠状病毒疾病2019(COVID-19)迅速席卷全球,并在短短几个月内达到了大流行状态。迄今为止,全球已报告了超过6800万例病例。为了应对这一大流行病,实施了公共卫生政策,通过实施“居家令”政策来减缓COVID-19的传播。

因此,为了检查全球范围内采取的限制措施对人员流动性的有效性,我们帮助客户研究死亡人数与时间的关系。

问题陈述:

该项目的目标是分析各国政府采取的各种限制措施对人员流动性的影响,以控制COVID-19病例和由此导致的死亡人数对经济和失业率的影响。我们使用汇率数据来查看这些限制措施对经济的影响,并在此期间检查失业率的变化。我开发了一个模型来预测由于病例增加而导致的COVID-19相关死亡人数。

Python随机森林、线性回归对COVID-19疫情、汇率数据预测死亡率、病例数、失业率影响可视化_第1张图片

使用 read csv 读取数据,然后使用数据可视化探索数据

#columns in the data
df.columns

Python随机森林、线性回归对COVID-19疫情、汇率数据预测死亡率、病例数、失业率影响可视化_第2张图片

数据信息

-数据集中的分类变量:dateRep、countriesAndTerritories、geoId、countryterritoryCode、continentExp
-数据集中的无限变量:日、月、年、病例数、死亡数、popData2019、Cumulative_number_for_14_days_of_COVID-19_cases_per_100000

#info about the data
df.info()

Python随机森林、线性回归对COVID-19疫情、汇率数据预测死亡率、病例数、失业率影响可视化_第3张图片

数据集中有 49572 个观测值和 12 个特征值

df.shape

Out[7]:

(49572, 12)

In [8]:

#属性/特征之间的相关性
 
df.corr()

Python随机森林、线性回归对COVID-19疫情、汇率数据预测死亡率、病例数、失业率影响可视化_第4张图片

#数据集说明
 
df.describe()

Python随机森林、线性回归对COVID-19疫情、汇率数据预测死亡率、病例数、失业率影响可视化_第5张图片

每天的 14 天累计病例数、病例数和死亡数。

-2783 14 天累计病例数不为零的天数
-报告的 14 天累计病例数为零的天数。
-报告的 14 天累计死亡人数为零的天数。

# 数据清洗-检查是否存在空值
df.isnull()

# 这些似乎是数据集中的真实读数,因此将其从数据集中删除可能会改变分析结果。所以保持原样。
print(df["Cumulative_number_for_14_days_of_COVID-19_cases_per_100000"].isnull().value_counts()) # 2783天中没有累积14天病例为零

Python随机森林、线性回归对COVID-19疫情、汇率数据预测死亡率、病例数、失业率影响可视化_第6张图片

#可视化

import seaborn as sns

In [107]:


df.columns

Python随机森林、线性回归对COVID-19疫情、汇率数据预测死亡率、病例数、失业率影响可视化_第7张图片

# 该函数接受特征/列名作为输入。
# 绘制特征在天数和月份上的计数情况。

def plots_days_mnths(x):
    
    plt.figure(figsize = (30,20))
    feature = ['day','month']
  • 病例数的日分析和月分析
  • 从病例图中我们可以看出,报告病例从 1 月份开始迅速增加,到 2020 年 7 月至 9 月达到最高峰。
  • 而各月每天的报告病例数大致相等。

plots_days

Python随机森林、线性回归对COVID-19疫情、汇率数据预测死亡率、病例数、失业率影响可视化_第8张图片

最初几个月报告的死亡病例有所增加,但从图中可以看出,自 7 月份以来已得到控制。
每月各天的报告死亡病例数大体相当,但略有不同。

plots_days_m

Python随机森林、线性回归对COVID-19疫情、汇率数据预测死亡率、病例数、失业率影响可视化_第9张图片

import numpy as np

截至 2010 年 10 月,全世界报告的病例总数约为 39400032 例。

df['cases'].sum() 

image.png


plt.ylabel('Counts', fontsize =14)
plt.title("Histogram of cases ", fontsize = 16)

Out[114]:

[0, 100000, 0, 100]

Python随机森林、线性回归对COVID-19疫情、汇率数据预测死亡率、病例数、失业率影响可视化_第10张图片

在大多数情况下,每天报告的死亡人数在 500 人及以下。
在大多数天数中,约有 50%的天数每天报告的新病例超过 40000 例。
全世界平均每天报告的死亡人数约为 795 人,平均每天报告的死亡人数为 23 人。

df[['deaths', 'cases']].mean(axis = 0, skipna = True) 

image.png

截至 2010 年 10 月,全世界报告的死亡总人数约为 1105353 人

df['deaths'].sum() 

image.png


plt.xlabel('deaths', fontsize = 14)
plt.ylabel('Counts', fontsize =14)

image.png

Python随机森林、线性回归对COVID-19疫情、汇率数据预测死亡率、病例数、失业率影响可视化_第11张图片

# 将日期列转换为日期时间格式,以便绘制图表。
date = pd.to_datetime(df['dateRep']) 

plt.figure(figsize =(15,10)) 

image.png

Python随机森林、线性回归对COVID-19疫情、汇率数据预测死亡率、病例数、失业率影响可视化_第12张图片

用回归法直观显示病例和死亡人数及其分布情况

-从图中可以看出,随着病例数的增加,死亡人数也在增加。
-显示出这两个特征之间的正线性关系。

#用回归法直观显示病例和死亡人数及其分布情况
sns.jointplot(x='cases' , y='deaths' , data=df, kind='reg')

Python随机森林、线性回归对COVID-19疫情、汇率数据预测死亡率、病例数、失业率影响可视化_第13张图片

按年分析失业率

导入失业数据并将其转换为数据框架
删除列名 "1960 "至 "1990 "之间的所有列,因为它们是空列,数据中没有各县报告的这些年份的数据,还删除了 "指标名称 "和 "指标代码 "这两列,因为分析不需要它们。

#  

unemp = unemp.drop(unemp.loc[:, 'Indicator Name':'1990'].columns, axis = 1)

In [590]:

unemp.head(5)

Python随机森林、线性回归对COVID-19疫情、汇率数据预测死亡率、病例数、失业率影响可视化_第14张图片

查看 1991 年至 2020 年各国的基本统计数据摘要

unemp.describe() 

Python随机森林、线性回归对COVID-19疫情、汇率数据预测死亡率、病例数、失业率影响可视化_第15张图片

绘制 1991 年至 2020 年各国就业率曲线的函数

def plot_unemp_region(country):
    for c in country:
        plt.plot(unemp.loc[c][1:],label = c)
  

失业率与国家总失业率对比

从 2015 年开始,爱尔兰在控制失业率方面做得更好,因此在 2020 年持续低迷的大流行病期间,爱尔兰在处理失业率方面做得更好。
但从 2019 年开始,爱尔兰的失业率仍有上升趋势,应注意避免进一步的损害。

plot_unemp_regio

Python随机森林、线性回归对COVID-19疫情、汇率数据预测死亡率、病例数、失业率影响可视化_第16张图片

不同国家和地区的失业率

在大流行病期间,爱尔兰在处理失业率方面似乎总体上介于欧盟和美国之间,印度在此期间与爱尔兰紧随其后。
数据显示,在过去一年中,美国的失业率在这些国家中最低。


plot_unemp_region(country)

Python随机森林、线性回归对COVID-19疫情、汇率数据预测死亡率、病例数、失业率影响可视化_第17张图片


                  skiprows = [0], index_col = "Date")

In [588]:

cur.head()

Python随机森林、线性回归对COVID-19疫情、汇率数据预测死亡率、病例数、失业率影响可视化_第18张图片

显示欧元相对于其他主要货币波动的功能

输入要与欧元汇率进行比较的货币列表
绘制 2020 年 1 月至 2020 年 10 月期间单个货币相对于欧元的波动图
从图中可以看出,在过去几个月中,欧元相对于美元、日元、人民币等主要货币的汇率走低,这表明由于为控制病毒传播而实施的封锁和限制行动的法律,企业和组织无法正常运作。
欧元估值受中国货币人民币的影响最大,受印度货币卢比的影响最小。

def plot_currency_rate(currency):
    
    plt.figure(figsize = (30,20))
    for c in list(enumerate(currency)):
        plt.subplot(3, 2,c[0]+1)
        plt.plot(cur.loc[:][c[1]],label = c[1])
 
        

In [303]:


plot_currency_rate(currency) 

Python随机森林、线性回归对COVID-19疫情、汇率数据预测死亡率、病例数、失业率影响可视化_第19张图片

for c in currency:
                    plt.plot(cur.loc[:][c],label = c)
                    plt.ylabel("Euro", fontsize = 12)
 

Python随机森林、线性回归对COVID-19疫情、汇率数据预测死亡率、病例数、失业率影响可视化_第20张图片

基于每日病例预测死亡的模型开发

sns.barplot(data=df, x= 'cases' , y = 'deaths' , estimator=np.std)

Python随机森林、线性回归对COVID-19疫情、汇率数据预测死亡率、病例数、失业率影响可视化_第21张图片

从下面代码中的相关矩阵图中,我可以看到死亡和病例之间的相关性高达 0.736,而其他变量之间的相关性很弱。

df.corr()

Python随机森林、线性回归对COVID-19疫情、汇率数据预测死亡率、病例数、失业率影响可视化_第22张图片

sns.heatmap(df.corr())

Python随机森林、线性回归对COVID-19疫情、汇率数据预测死亡率、病例数、失业率影响可视化_第23张图片

sns.heatmap(df.corr(),annot=True , cmap='YlGnBu')

Python随机森林、线性回归对COVID-19疫情、汇率数据预测死亡率、病例数、失业率影响可视化_第24张图片

sns.pairplot(df)

Python随机森林、线性回归对COVID-19疫情、汇率数据预测死亡率、病例数、失业率影响可视化_第25张图片

通过可视化观察数据分布,可以清楚地看出病例数的增加导致死亡人数的增加。因此,为了根据全国每天的病例数预测死亡人数,我们使用了线性回归法来完成这一过程,结果如下。

这段代码用于将数组或矩阵随机分割成训练集和测试集。

# 用于将数组或矩阵随机分割成训练集和测试集
from sklearn.model_selection import train_test_split 

自变量为 cases,因变量为 deaths,分别赋值给 X 和 y。

X, y = df[['cases']], df['deaths']
  • X 是包含 "cases" 条目的数据框(DataFrame)的一列,y 是包含目标/响应变量 "deaths" 的序列(Series)。
X.head(5)
  • 数据被划分为测试集和训练集,使用 train_test_split() 函数,以 80:20 的比例进行划分。
  • train_test_split() 函数中的 test_size 参数设为 0.2,表示将 20% 的数据作为测试集。
# 训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

在 [565] 处:

# 定义一个线性回归模型
from sklearn import linear_model


# 使用训练集训练模型
regr.fit(X_train, y_train)

image.png

回归系数

  • 回归系数是未知总体参数的估计值,表示预测变量(cases)与响应变量(deaths)之间的关系。
  • beta0 的回归系数为 0.0196,这意味着平均而言,当没有报告病例时,死亡人数为 0.0196。
  • 截距系数为 6.759,说明每天病例增加一个单位时,死亡人数增加 6.759。例如,每增加 100 个新病例,死亡人数每天增加 7.5。
  • 对测试数据进行线性模型预测死亡人数
#基于测试数据进行预测
y_pre

结果:

image.png

# 每天对应病例数量的实际死亡人数
y_test.head(10)

结果:

Python随机森林、线性回归对COVID-19疫情、汇率数据预测死亡率、病例数、失业率影响可视化_第26张图片

df.head()

结果:

Python随机森林、线性回归对COVID-19疫情、汇率数据预测死亡率、病例数、失业率影响可视化_第27张图片

计算评估指标需要重新调整 X 的形状:

# 重新调整 X 的形状以计算指标
X.values.reshape

结果:

计算均值绝对误差(MAE):

from sklearn.metrics import mean_squared_error,r2_score , mean_absolute_error

平均绝对误差(MAE)

  • 平均绝对误差(MAE)是用于回归模型的另一种损失函数。
  • MAE 是目标变量和预测变量之间的绝对差的总和。
  • 我们有实际值 y_test 和预测值 y_pre,可以观察到它们之间的差异。
#MAE
mean_absolute_error(y_test , y_pre)

结果:

18.3128

R-Squared

  • R-squared 是衡量数据与拟合的回归线之间接近程度的统计指标。
  • 提供了关于预测变量“cases”在我们的模型中如何解释响应变量“death”的程度的指示。
  • 我的模型使用预测变量“cases”能够解释响应变量“death”的变异程度为61%。
#R方分数
r2_score(y_test , y_pre)

结果:

0.6156843

散点图展示了线性回归线以及数据围绕该线分布的情况。

plt.scatter(X_test, y_test , color= 'blue' , linewidths=1)

Python随机森林、线性回归对COVID-19疫情、汇率数据预测死亡率、病例数、失业率影响可视化_第28张图片

g

输出[579]:

0.615

输入[580]:

# 构建随机森林模型。

输入[581]:

from sklearn.ensemble import ExtraTreesRegressor, RandomForestRegressor

输入[582]:

rfr.fit(X_train, y_train)

Python随机森林、线性回归对COVID-19疫情、汇率数据预测死亡率、病例数、失业率影响可视化_第29张图片

Y_pred = rfr.predict(X_test)

输入[584]:

rfr.score(X_test, y_test)

输出[584]:

0.39

输入[585]:

plt.scatter(X_test, Y_pred, color='red')
plt.plot(X_test, y_pre, color='blue', linewidth=0.5)

Python随机森林、线性回归对COVID-19疫情、汇率数据预测死亡率、病例数、失业率影响可视化_第30张图片

结论

通过探索性数据分析,发现每天新冠病例增加时,报告的死亡人数也会有所上升。通过将病例作为预测因子、每天的死亡人数作为目标变量的两个回归模型的结果,线性模型在预测每天的死亡人数方面更准确,与每天报告的病例数相关。

通过对包含失业率和欧元汇率数据的数据集进行数据可视化分析,还能够探索各国为限制病毒传播而引入的限制措施对欧洲主要经济体和失业率产生的影响。

欧元兑美元、英镑、人民币等主要货币的汇率在过去几个月中看到了下降,这表明封锁措施对企业和国家经济的影响。对失业率的影响也在失业率数据中清晰可见,爱尔兰的失业率相对于其他国家来说处理得更好,但在过去几个月中失业率明显上升。

参考资料

  1. https://www.sciencedirect.com/science/article/abs/pii/S004896...

Python随机森林、线性回归对COVID-19疫情、汇率数据预测死亡率、病例数、失业率影响可视化_第31张图片

最受欢迎的见解

1.在python中使用lstm和pytorch进行时间序列预测

2.python中利用长短期记忆模型lstm进行时间序列预测分析

3.Python用RNN循环神经网络:LSTM长期记忆、GRU门循环单元、回归和ARIMA对COVID-19新冠疫情新增人数时间序列

4.Python TensorFlow循环神经网络RNN-LSTM神经网络预测股票市场价格时间序列和MSE评估准确性

5.r语言copulas和金融时间序列案例

6.R 语言用RNN循环神经网络 、LSTM长短期记忆网络实现时间序列长期利率预测

7.Matlab创建向量自回归(VAR)模型分析消费者价格指数 (CPI) 和失业率时间序列

8.r语言k-shape时间序列聚类方法对股票价格时间序列聚类

9.R语言结合新冠疫情COVID-19股票价格预测:ARIMA,KNN和神经网络时间序列分析

你可能感兴趣的:(数据挖掘深度学习人工智能算法)