AVL树
- 最早的自平衡的搜索树结构
-
对于任意一个节点,左子树和右子树的高度差不能超过一。
- 满二叉树(除了叶子节点之外,其他节点都有左右俩个子树)是平衡二叉树。
- 完全二叉树(可能有一个非叶子节点的右子树是空,空缺的节点部分在整棵树的右下部分,整颗树的叶子节点最大的深度值和最小的深度值相差不超过一,所有的叶子节点要么在树的最后一层,要么在树的倒数第二层)是平衡二叉树。
- 线段树(空出来的部分不一定在整棵树的右下角部分,整颗树的叶子节点最大的深度值和最小的深度值相差不超过一)是平衡二叉树。
平衡因子
二叉树上节点的左子树深度减去右子树深度的值称为平衡因子,那么平衡二叉树上所有节点的平衡因子只可能是-1,0,1。只要二叉树上的有一个节点的平衡因子的绝对值大于1,则该二叉树就是不平衡的。
代码示例
创建平衡二叉树
public class AVLTree , V> {
private class Node{
public K key;
public V value;
public Node left, right;
public int height; //记录当前节点所处的高度值
public Node(K key, V value){
this.key = key;
this.value = value;
left = null;
right = null;
height = 1;
}
}
private Node root;
private int size;
public AVLTree(){
root = null;
size = 0;
}
public int getSize() {
return size;
}
public boolean isEmpty() {
return size == 0;
}
private Node getNode(Node node, K key){
if (node == null)
return null;
if (key.compareTo(node.key) == 0)
return node;
else if (key.compareTo(node.key) < 0)
return getNode(node.left, key);
else
return getNode(node.right, key);
}
public boolean contains(K key) {
return getNode(root, key) != null;
}
public V get(K key) {
Node node = getNode(root, key);
return node == null? null : node.value;
}
public void set(K key, V newValue) {
Node node = getNode(root, key);
if (node == null)
throw new IllegalArgumentException(key + "doesn`t exist");
node.value = newValue;
}
}
获取高度
//获得节点node的高度
private int getHeight(Node node) {
if (node == null)
return 0;
return node.height;
}
获取平衡因子
//获取节点node的平衡因子
private int getBalanceFactor(Node node) {
if (node == null)
return 0;
return getHeight(node.left) - getHeight(node.right);
}
判断是否是二叉树
//判断该二叉树是否是一颗二分搜索树
public boolean isBST() {
ArrayList keys = new ArrayList<>();
inOrder(root, keys);
for (int i = 0; i < keys.size(); I++)
if (keys.get(i-1).compareTo(keys.get(i)) > 0)
return false;
return true;
}
//中序遍历
private void inOrder(Node node, ArrayList keys){
if (node == null)
return;
inOrder(node.left, keys);
keys.add(node.key);
inOrder(node.right, keys);
}
判断是否是平衡二叉树
//判断该二叉树是否是一颗平衡二叉树
public boolean isBalanced() {
return isBalanced(root);
}
//判断以node为根的二叉树是否是一颗平衡二叉树
private boolean isBalanced(Node node) {
if (node == null)
return true;
int balanceFactor = getBalanceFactor(node);
if (Math.abs(balanceFactor) > 1)
return false;
return isBalanced(node.left) && isBalanced(node.right);
}
如何维护平衡,当添加新元素时可能会破坏平衡
- 右旋转 RR
右旋转代码
//右旋转
// 对节点y进行向右旋转操作,返回旋转后新的根节点x
// y x
// / \ / \
// x T4 向右旋转(y) z y
// / \ -------------> / \ / \
// z T3 T1 T2 T3 T4
// / \
// T1 T2
private Node rightRotate(Node y) {
Node x = y.left;
Node T3 = x.right;
//向右旋转过程
x.right = y;
y.left = T3;
//更新节点height值 先更新y 后更新x
y.height = 1 + Math.max(getHeight(y.left), getHeight(y.right));
x.height = 1 + Math.max(getHeight(x.left), getHeight(x.right));
return x;
}
- 左旋转 LL
左旋转代码
//左旋转
// 对节点y进行向左旋转操作,返回旋转后新的根节点x
// y x
// / \ / \
// T1 x 向左旋转(y) y z
// / \ -------------> / \ / \
// T2 z T1 T2 T3 T4
// / \
// T3 T4
private Node leftRotate(Node y) {
Node x = y.right;
Node T2 = x.left;
//向左旋转过程
x.left = y;
y.right = T2;
y.height = 1 + Math.max(getHeight(y.left), getHeight(y.right));
x.height = 1 + Math.max(getHeight(x.left), getHeight(x.right));
return x;
}
- LR
LR代码示例
//LR
if (banlanceFactor > 1 && getBalanceFactor(node.left) < 0){
node.left = leftRotate(node.left);
return rightRotate(node);
}
- RL
RL代码示例
//RL
if (banlanceFactor < -1 && getBalanceFactor(node.right) > 0){
node.right = rightRotate(node.right);
return leftRotate(node);
}
添加一个元素
//向二分搜索树种添加新元素(key, value)
public void add(K key, V value) {
root = add(root, key, value);
}
//向以node为根的二分搜索树中插入元素(key, value),递归算法
//返回插入新节点后二分搜索树的根
private Node add(Node node, K key, V value) {
if (node == null) {
size ++;
return new Node(key, value);
}
//如果相等 则不作处理
if (key.compareTo(node.key) < 0)
node.left = add(node.left, key, value);
else if (key.compareTo(node.key) > 0)
node.right = add(node.right, key, value);
else // ==
node.value = value;
//更新height
node.height = 1 + Math.max(getHeight(node.left), getHeight(node.right));
//计算平衡因子
int banlanceFactor = getBalanceFactor(node);
if (Math.abs(banlanceFactor) > 1)
System.out.println("unbalanced: " + banlanceFactor);
//平衡维护
// LL
if (banlanceFactor > 1 && getBalanceFactor(node.left) >= 0)
return rightRotate(node);
//RR
if (banlanceFactor < -1 && getBalanceFactor(node.right) <= 0)
return leftRotate(node);
//LR
if (banlanceFactor > 1 && getBalanceFactor(node.left) < 0){
node.left = leftRotate(node.left);
return rightRotate(node);
}
//RL
if (banlanceFactor < -1 && getBalanceFactor(node.right) > 0){
node.right = rightRotate(node.right);
return leftRotate(node);
}
return node;
}
删除一个元素
public V remove(K key) {
Node node = getNode(root, key);
if (node != null){
root = remove(root, key);
return node.value;
}
return null;
}
//删除以node为根的二分搜索树中值键为Key的节点 递归算法
//返回删除节点后新的二分搜索树的根
private Node remove(Node node, K key){
if (node == null)
return null;
Node retNode;
if (key.compareTo(node.key) < 0 ){
node.left = remove(node.left, key);
retNode = node;
} else if (key.compareTo(node.key) > 0 ){
node.right = remove(node.right, key);
retNode = node;
} else {
if (node.left == null) {
Node right = node.right;
node.right = null;
size --;
retNode = right;
} else if (node.right == null) {
Node left = node.left;
node.left = null;
size --;
retNode = left;
} else {
//待删除节点左右子树均不为空的情况
//找到比待删除节点大的最小元素,即待删除节点右子树的最小节点
//用这个节点顶替待删除节点的位置
Node successor = minimum(node.right);
//removeMin 没有维护平衡 所以会影响平衡因子
//successor.right = removeMin(node.right);
//调用自己也会删除 且维护平衡
successor.right = remove(node.right, successor.key);
successor.left = node.left;
node.left = node.right = null;
retNode = successor;
}
}
if (retNode == null)
return null;
//更新height
retNode.height = 1 + Math.max(getHeight(retNode.left), getHeight(retNode.right));
//计算平衡因子
int banlanceFactor = getBalanceFactor(retNode);
if (Math.abs(banlanceFactor) > 1)
System.out.println("unbalanced: " + banlanceFactor);
//平衡维护
// LL
if (banlanceFactor > 1 && getBalanceFactor(retNode.left) >= 0)
return rightRotate(retNode);
//RR
if (banlanceFactor < -1 && getBalanceFactor(retNode.right) <= 0)
return leftRotate(retNode);
//LR
if (banlanceFactor > 1 && getBalanceFactor(retNode.left) < 0){
retNode.left = leftRotate(retNode.left);
return rightRotate(retNode);
}
//RL
if (banlanceFactor < -1 && getBalanceFactor(retNode.right) > 0){
retNode.right = rightRotate(retNode.right);
return leftRotate(retNode);
}
return retNode;
}
时间复杂度:O(logn)