Multicolor Printing Using Electric-Field-Responsive and Photocurable Photonic Crystals

文献题目 Relative Abundance of Transcripts (RATs): Identifying differential isoform abundance from RNA-seq

DOI(url): https://doi.org/10.1002/adfm.201702825
发表日期:27 Sep 2017
关键点
参考意义

基于电响应和可光固化的胶体光子晶体,可用于电场辅助多色印刷,其通过SiO 2颗粒在碳酸亚丙酯(PC)和三羟甲基丙烷乙氧基化物三丙烯酸酯(ETPTA)的混合物中的超饱和诱导的自组装而制备。这种胶体晶体悬浮液,名为电子墨水,具有可调节的结构颜色,可控的灰度和可立即固定的特性,因为SiO 2 / ETPTA-PC光子晶体具有亚稳和可逆组装以及可聚合特征。分别开发了具有光掩模和无掩模像素印刷技术的平版印刷,以使用单组分电子墨水有效地制备多色和高分辨率光子图案。

总之,通过在PC和ETPTA的混合物中过饱和诱导的SiO 2颗粒的自组装制备电可调光子晶体液体,并且优化它们的体积分数以实现明亮的结构颜色和反射波长的宽调谐。结构颜色的电调谐可以通过电场中颗粒间距离的变化来解释,直到达到电包装力和静电排斥力的新平衡。这种SiO 2 / ETPTA-PC液体光子晶体可以用作E -inkfor光子印刷,因为它具有可调节的结构颜色,可控的灰度和可立即固定的特性,这是由于其亚稳定性,可逆组装 - 拆卸和可光聚合特征。分别开发平版印刷和像素印刷方法以使用单组分E -ink制备多色和高分辨率光子晶体图案。光子晶体Eink与在该工作中研究的光子印刷方法一起可以以快速,方便和经济的方式揭示可能有用的材料系统以制造结构颜色图案或光子器件。

TRIMETHYLOLPROPANE ETHOXYLATE TRIACRYLATE(ETPTA):用作辐射固化材料


ETPTA
Figure 2. a) Schematic illustration to the shrinkage or expansion of colloidal microcrystals as the electric field is increased or decreased. The cross-section SEM image of cured colloidal microcrystals which are exposed to electric field of b) 0 V and c) 3.3 V before curing. d) The blueshift of the reflection peak for photonic crystal E-ink with the increase of electric field.
Figure 3. Blueshift of reflection signals for E-ink with SiO2 volume fraction of a) 20%, b) 25%, c) 30%, and d) 35% when the voltage of electric feld is increased from 0 to 3.3 V. Change of e) reflection wavelength and f) intensity in an increasing electric feld for the above samples.
Figure 4. Blueshift of reflection signals for E-ink with volume fraction of propylene carbonate set as a) 50%, b) 55%, c) 60%, and d) 65% when the voltage of electric feld is increased from 0 to 3 V. Change of e) reflection wavelength and f) intensity in an increasing electric feld for the above samples.
Figure 5. a) Change of reflective wavelength with electric feld and change of c) reflection intensity with assembly time before and after the E-ink was cured by UV. b) Five color blocks (bottom to top) printed under 0, 1.5, 1.8, 2.5, and 3.0 V. d) Five grayscale blocks (bottom to top) printed after 0, 1, 2, 5, and 10 s of reassembly
Figure 6. a) Mechanism of multicolor printing via repeated electric tuning and UV curing. b) Lithographical printing of multicolor flower by periodically photomask covering, electric feld tuning, and UV curing.
Figure 7. a,b) Optical microscope images of photonic prints of “lines” and “spots.” c,d) Evolution of reflection wavelength across the “line” and “spot” along the white arrows.
Figure 8. a) Working mechanism and b) practical device for the pixel printing of c–e) number 1, 2, and 4 in a 5 × 7 array of electric cells

你可能感兴趣的:(Multicolor Printing Using Electric-Field-Responsive and Photocurable Photonic Crystals)