性能优化

性能优化

卡顿原因的产生:
按照60FPS的刷帧率,每隔16ms就会有一次VSync信号,当信号到达时CPU与GPU还未处理好资源

卡顿优化:(CPU)

  1. 尽量用轻量级的对象,比如用不到事件处理的地方,可以考虑使用CALayer取代UIView
  2. 不要频繁地调用UIView的相关属性,比如frame、bounds、transform等属性,尽量减少不必要的修改
  3. 尽量提前计算好布局,在有需要时一次性调整对应的属性,不要多次修改属性
  4. Autolayout会比直接设置frame消耗更多的CPU资源
  5. 图片的size最好刚好跟UIImageView的size保持一致
  6. 控制一下线程的最大并发数量
  7. 尽量把耗时的操作放到子线程 文本处理(尺寸计算、绘制) 图片处理(解码、绘制)

卡顿优化:(GPU)

  1. 尽量避免短时间内大量图片的显示,尽可能将多张图片合成一张进行显示
  2. GPU能处理的最大纹理尺寸是4096x4096,一旦超过这个尺寸,就会占用CPU资源进行处理,所以纹理尽量不要超过这个尺寸
  3. 尽量减少视图数量和层次
  4. 减少透明的视图(alpha<1),不透明的就设置opaque为YES
  5. 尽量避免出现离屏渲染

离屛渲染

圆角(layer.masksToBounds = YES、layer.cornerRadius大于0)
遮罩 (layer.mask)
阴影(layer.shadowXXX)
开启光栅化(layer.shouldRasterize = YES)
如何避免(如果设置了layer.shadowPath就不会产生离屏渲染)

卡顿检测

平时所说的“卡顿”主要是因为在主线程执行了比较耗时的操作
可以添加Observer到主线程RunLoop中,通过监听RunLoop状态切换的耗时,以达到监控卡顿的目的

耗电优化

耗电主要来源:

  1. CPU处理,Processing
  2. 网络,Networking
  3. 定位,Location
  4. 图像,Graphics

优化:

  1. 尽可能降低CPU、GPU功耗
  2. 少用定时器
  3. 优化I/O操作(不要频繁写数据,最好批量一次性写入.读写大量数据时,考虑用dispatch_io,基于GCD的API会优化磁盘访问)
  4. 数据量大建议用数据库(SQLite、CoreData)

网络优化:

  1. 减少、压缩网络数据
  2. 如果多次请求的结果是相同的,尽量使用缓存
  3. 使用断点续传,否则网络不稳定时可能多次传输相同的内容
  4. 网络不可用时,不要尝试执行网络请求
  5. 让用户可以取消长时间运行或者速度很慢的网络操作,设置合适的超时时间
  6. 批量传输,比如,下载视频流时,不要传输很小的数据包,直接下载整个文件或者一大块一大块地下载。如果下载广告,一次性多下载一些,然后再慢慢展示。如果下载电子邮件,一次下载多封,不要一封一封地下载

定位优化:

  1. 如果只是需要快速确定用户位置,最好用CLLocationManager的requestLocation方法。定位完成后,会自动让定位硬件断电
  2. 如果不是导航应用,尽量不要实时更新位置,定位完毕就关掉定位服务
  3. 尽量降低定位精度,比如尽量不要使用精度最高的kCLLocationAccuracyBest
  4. 需要后台定位时,尽量设置pausesLocationUpdatesAutomatically为YES,如果用户不太可能移动的时候系统会自动暂停位置更新
  5. 尽量不要使用startMonitoringSignificantLocationChanges,优先考虑startMonitoringForRegion:

硬件检测优化:
用户移动、摇晃、倾斜设备时,会产生动作(motion)事件,这些事件由加速度计、陀螺仪、磁力计等硬件检测。在不需要检测的场合,应该及时关闭这些硬件

APP启动优化

APP启动时间的优化,主要是针对冷启动进行优化

通过添加环境变量可以打印出APP的启动时间分析(Edit scheme -> Run -> Arguments)
DYLD_PRINT_STATISTICS设置为1
如果需要更详细的信息,那就将DYLD_PRINT_STATISTICS_DETAILS设置为1

APP冷启动可以分为三大阶段:
dyld
runtime
main

dyld(dynamic link editor),Apple的动态链接器,可以用来装载Mach-O文件(可执行文件、动态库等),做了以下事件:

  1. 装载APP的可执行文件,同时会递归加载所有依赖的动态库
  2. 当dyld把可执行文件、动态库都装载完毕后,会通知Runtime进行下一步的处理

启动APP时,runtime所做的事情有:

  1. 调用map_images进行可执行文件内容的解析和处理
  2. 在load_images中调用call_load_methods,调用所有Class和Category的+load方法
  3. 进行各种objc结构的初始化(注册Objc类 、初始化类对象等等)
  4. 调用C++静态初始化器和attribute((constructor))修饰的函数

到此为止,可执行文件和动态库中所有的符号(Class,Protocol,Selector,IMP,…)都已经按格式成功加载到内存中,被runtime 所管理

总结一下:

  1. APP的启动由dyld主导,将可执行文件加载到内存,顺便加载所有依赖的动态库
  2. 并由runtime负责加载成objc定义的结构
  3. 所有初始化工作结束后,dyld就会调用main函数
  4. 接下来就是UIApplicationMain函数,AppDelegate的application:didFinishLaunchingWithOptions:方法

启动优化:
dyld阶段:

  1. 减少动态库、合并一些动态库(定期清理不必要的动态库)
  2. 减少Objc类、分类的数量、减少Selector数量(定期清理不必要的类、分类)
  3. 减少C++虚函数数量
  4. Swift尽量使用struct

runtime阶段:
用+initialize方法和dispatch_once取代所有的attribute((constructor))、C++静态构造器、ObjC的+load

main阶段:
在不影响用户体验的前提下,尽可能将一些操作延迟,不要全部都放在finishLaunching方法中
按需加载

安装包瘦身:
安装包(IPA)主要由可执行文件、资源组成

资源(图片、音频、视频等)
采取无损压缩
去除没有用到的资源: https://github.com/tinymind/LSUnusedResources

可执行文件瘦身

编译器优化
Strip Linked Product、Make Strings Read-Only、Symbols Hidden by Default设置为YES
去掉异常支持,Enable C++ Exceptions、Enable Objective-C Exceptions设置为NO, Other C Flags添加-fno-exceptions

利用AppCode(https://www.jetbrains.com/objc/)检测未使用的代码:菜单栏 -> Code -> Inspect Code

编写LLVM插件检测出重复代码、未被调用的代码

生成LinkMap文件,可以查看可执行文件的具体组成


image.png

可借助第三方工具解析LinkMap文件: https://github.com/huanxsd/LinkMap

你可能感兴趣的:(性能优化)