算法题打卡day53-动态规划 | 1143.最长公共子序列、1035.不相交的线、53. 最大子序和

1143. 最长公共子序列 - 力扣(LeetCode)

状态:查看转移方程后AC。

这道题是研一期间刷的题目,也就是算法导论中的例子,整体思路和昨天的题很像,区别在于转移方程。注意,也要知道怎么样可以把这个公共子序列给提取出来。代码如下:

class Solution {
public:
    int longestCommonSubsequence(string text1, string text2) {
        //dp[i][j] text1 i-1 和 text2 j-1 中的最大子序列长度
        int len1 = text1.size(), len2 = text2.size();
        vector> dp(len1+1, vector(len2+1, 0));
        for(int i = 1; i <= len1; ++i){
            for(int j = 1; j <= len2; ++j){
                if(text1[i-1] == text2[j-1]){
                    dp[i][j] = dp[i-1][j-1] + 1;
                }else{
                    dp[i][j] = max(dp[i-1][j], dp[i][j-1]);
                }
            }
        }
        return dp[len1][len2];
    }
};

1035. 不相交的线 - 力扣(LeetCode)

状态:查看思路后AC。

本题的关键就是将其转换为两数组的最长公共子序列问题,代码如下:

class Solution {
public:
    int maxUncrossedLines(vector& nums1, vector& nums2) {
        // 本质是找两个数组的最长公共子序列
        int len1 = nums1.size(), len2 = nums2.size();
        vector> dp(len1+1, vector(len2+1, 0));
        for(int i = 1; i <= len1; ++i){
            for(int j = 1; j <= len2; ++j){
                if(nums1[i-1] == nums2[j-1]){
                    dp[i][j] = dp[i-1][j-1] + 1;
                }else{
                    dp[i][j] = max(dp[i-1][j], dp[i][j-1]);
                }
            }
        }
        return dp[len1][len2];
    }
};

53. 最大子数组和 - 力扣(LeetCode)

状态:AC。

之前用过贪心思路,但是动态规划的思路更容易想到,注意对res的使用。代码如下:

class Solution {
public:
    int maxSubArray(vector& nums) {
        int len = nums.size();
        vector dp(len, 0);
        dp[0] = nums[0];
        int res = nums[0];
        for(int i = 1; i < len; ++i){
            dp[i] = max(dp[i-1]+nums[i], nums[i]);
            if(dp[i] > res){ res = dp[i]; }
        }
        return res;
    }
};

 公共子序列/子串的打印

#include 
#include 
#include 
#include 

using namespace std;

class Solution{
public:
    // 最长公共子串
    string maxSubseq(string s1, string s2){
        int len1 = s1.size(), len2 = s2.size();
        vector> dp(len1+1, vector(len2+1, 0));
        int res = INT_MIN, index = -1;
        for(int i = 1; i <= len1; ++i){
            for(int j = 1; j <= len2; ++j){
                if(s1[i-1] == s2[j-1]){
                    dp[i][j] = dp[i-1][j-1] + 1;
                }else{
                    dp[i][j] = 0;
                }
                if(dp[i][j] > res){
                    res = dp[i][j];
                    index = i;
                }
            }
        }
        return s1.substr(index-res, res);
    }

    // 最长公共子序列
    string maxComseq(string s1, string s2){
        int len1 = s1.size(), len2 = s2.size();
        vector> dp(len1+1, vector(len2+1, 0));
        for(int i = 1; i <= len1; ++i){
            for(int j = 1; j <= len2; ++j){
                if(s1[i-1] == s2[j-1]){
                    dp[i][j] = dp[i-1][j-1] + 1;
                }else{
                    dp[i][j] = max(dp[i-1][j], dp[i][j-1]);
                }
            }
        }
        string res = "";
        int i = len1, j = len2;
        while(i != 0 && j != 0){
            if(s1[i-1] == s2[j-1]){
                res += s1[i-1];
                i--;
                j--;
            }else if(dp[i-1][j] > dp[i][j-1]){
                i--;
            }else if(dp[i-1][j] <= dp[i][j-1]){
                j--;
            }
        }
        reverse(res.begin(), res.end());
        return res;
    }
};

int main()
{
    string s1 = "helloworld", s2 = "sawsogrlsdfa";
    Solution ans;
    string res1 = ans.maxSubseq(s1, s2);
    cout << res1 << endl;

    string res2 = ans.maxComseq(s1, s2);
    cout << res2 << endl;

    return 0;
}

你可能感兴趣的:(算法,动态规划)