libdispatch源码分析—dispatch_group

创建组

dispatch_group_t
dispatch_group_create(void)
{
    dispatch_group_t dg = _dispatch_alloc(DISPATCH_VTABLE(group),
            sizeof(struct dispatch_semaphore_s));
    _dispatch_semaphore_init(LONG_MAX, dg);
    return dg;
}
  1. 调用 _dispatch_alloc() 创建
  2. 调用 _dispatch_semaphore_init() 初始化
    2.1 初始化 dispatch_semaphore_t 结构体的计数器、执行队列、目标值

进入组

void
dispatch_group_enter(dispatch_group_t dg)
{
    dispatch_semaphore_t dsema = (dispatch_semaphore_t)dg;

    (void)dispatch_semaphore_wait(dsema, DISPATCH_TIME_FOREVER);
}
  1. 调用 dispatch_semaphore_wait() 加锁等待,返回值为等待数量
    1. 信号量计数器先自减 value,然后返回.
    2. value > 0 返回 0 表示目前 waitor 数量为0,因为传入的 value 无穷大,所以到此返回。
      因此,调用 group_enter() 之后,当前线程不会被阻塞。

离开组

void
dispatch_group_leave(dispatch_group_t dg)
{
    dispatch_semaphore_t dsema = (dispatch_semaphore_t)dg;
    dispatch_atomic_release_barrier();
    long value = dispatch_atomic_inc2o(dsema, dsema_value);
    if (slowpath(value == LONG_MIN)) {
        DISPATCH_CLIENT_CRASH("Unbalanced call to dispatch_group_leave()");
    }
    if (slowpath(value == dsema->dsema_orig)) {
        (void)_dispatch_group_wake(dsema);
    }
}
  1. 信号量计数器先自加 value,然后返回.
  2. 如果自加后的value 为 dsema_orig 调用 _dispatch_group_wake() 唤醒notify

设置组监控

#ifdef __BLOCKS__
void
dispatch_group_notify(dispatch_group_t dg, dispatch_queue_t dq,
        dispatch_block_t db)
{
    dispatch_group_notify_f(dg, dq, _dispatch_Block_copy(db),
            _dispatch_call_block_and_release);
}
#endif

void
dispatch_group_notify_f(dispatch_group_t dg, dispatch_queue_t dq, void *ctxt,
        void (*func)(void *))
{
    dispatch_semaphore_t dsema = (dispatch_semaphore_t)dg;
    struct dispatch_sema_notify_s *dsn, *prev;

    // FIXME -- this should be updated to use the continuation cache
    while (!(dsn = calloc(1, sizeof(*dsn)))) {
        sleep(1);
    }

    dsn->dsn_queue = dq;
    dsn->dsn_ctxt = ctxt;
    dsn->dsn_func = func;
    _dispatch_retain(dq);
    dispatch_atomic_store_barrier();
    prev = dispatch_atomic_xchg2o(dsema, dsema_notify_tail, dsn);
    if (fastpath(prev)) {
        prev->dsn_next = dsn;
    } else {
        _dispatch_retain(dg);
        (void)dispatch_atomic_xchg2o(dsema, dsema_notify_head, dsn);
        if (dsema->dsema_value == dsema->dsema_orig) {
            _dispatch_group_wake(dsema);
        }
    }
}
  1. 调用 dispatch_group_notify_f() 传入组,执行队列,block,block调用方法指针。
    1. 初始化一个 dispatch_sema_notify_s 结构体 dsn
    2. 在 group 中,notify 为一个链表,此时调用 dispatch_atomic_xchg2o 获取前驱节点。
    3. 如果找到前驱节点,那么链接 dsn;
    4. 如果没找到前驱节点,把 dsn 作为首节点
    5. 检查所有任务是否执行完毕

组唤醒

static long
_dispatch_group_wake(dispatch_semaphore_t dsema)
{
    struct dispatch_sema_notify_s *next, *head, *tail = NULL;
    long rval;

    head = dispatch_atomic_xchg2o(dsema, dsema_notify_head, NULL);
    if (head) {
        // snapshot before anything is notified/woken 
        tail = dispatch_atomic_xchg2o(dsema, dsema_notify_tail, NULL);
    }
    rval = dispatch_atomic_xchg2o(dsema, dsema_group_waiters, 0);
    if (rval) {
        // wake group waiters
#if USE_MACH_SEM
        _dispatch_semaphore_create_port(&dsema->dsema_waiter_port);
        do {
            kern_return_t kr = semaphore_signal(dsema->dsema_waiter_port);
            DISPATCH_SEMAPHORE_VERIFY_KR(kr);
        } while (--rval);
#endif
    }
    if (head) {
        // async group notify blocks
        do {
            dispatch_async_f(head->dsn_queue, head->dsn_ctxt, head->dsn_func);
            _dispatch_release(head->dsn_queue);
            next = fastpath(head->dsn_next);
            if (!next && head != tail) {
                while (!(next = fastpath(head->dsn_next))) {
                    _dispatch_hardware_pause();
                }
            }
            free(head);
        } while ((head = next));
        _dispatch_release(dsema);
    }
    return 0;
}

每个组leave的时候,都会检查是否所有任务都已经结束,然后等到所有任务都结束后,会调用wake 函数来执行 notify

  1. 获取notify链表的头/尾结点和等待执行的任务数
  2. 如果有任务在等待,向内核发送信号,唤起等待任务
  3. 异步执行链表中所有的 notify

组等待

long
dispatch_group_wait(dispatch_group_t dg, dispatch_time_t timeout)
{
    dispatch_semaphore_t dsema = (dispatch_semaphore_t)dg;

    if (dsema->dsema_value == dsema->dsema_orig) {
        return 0;
    }
    if (timeout == 0) {
#if USE_MACH_SEM
        return KERN_OPERATION_TIMED_OUT;
#endif
    }
    return _dispatch_group_wait_slow(dsema, timeout);
}

static long
_dispatch_group_wait_slow(dispatch_semaphore_t dsema, dispatch_time_t timeout)
{
    long orig;

#if USE_MACH_SEM
    mach_timespec_t _timeout;
    kern_return_t kr;
#endif

again:
    // check before we cause another signal to be sent by incrementing
    // dsema->dsema_group_waiters
    if (dsema->dsema_value == dsema->dsema_orig) {
        return _dispatch_group_wake(dsema);
    }
    // Mach semaphores appear to sometimes spuriously wake up. Therefore,
    // we keep a parallel count of the number of times a Mach semaphore is
    // signaled (6880961).
    (void)dispatch_atomic_inc2o(dsema, dsema_group_waiters);
    // check the values again in case we need to wake any threads
    if (dsema->dsema_value == dsema->dsema_orig) {
        return _dispatch_group_wake(dsema);
    }

#if USE_MACH_SEM
    _dispatch_semaphore_create_port(&dsema->dsema_port);
#endif

    // From xnu/osfmk/kern/sync_sema.c:
    // wait_semaphore->count = -1; /* we don't keep an actual count */
    //
    // The code above does not match the documentation, and that fact is
    // not surprising. The documented semantics are clumsy to use in any
    // practical way. The above hack effectively tricks the rest of the
    // Mach semaphore logic to behave like the libdispatch algorithm.

    switch (timeout) {
    default:
#if USE_MACH_SEM
        do {
            uint64_t nsec = _dispatch_timeout(timeout);
            _timeout.tv_sec = (typeof(_timeout.tv_sec))(nsec / NSEC_PER_SEC);
            _timeout.tv_nsec = (typeof(_timeout.tv_nsec))(nsec % NSEC_PER_SEC);
            kr = slowpath(semaphore_timedwait(dsema->dsema_waiter_port,
                    _timeout));
        } while (kr == KERN_ABORTED);

        if (kr != KERN_OPERATION_TIMED_OUT) {
            DISPATCH_SEMAPHORE_VERIFY_KR(kr);
            break;
        }
#endif
        // Fall through and try to undo the earlier change to
        // dsema->dsema_group_waiters
    case DISPATCH_TIME_NOW:
        while ((orig = dsema->dsema_group_waiters)) {
            if (dispatch_atomic_cmpxchg2o(dsema, dsema_group_waiters, orig,
                    orig - 1)) {
#endif
            }
        }
        // Another thread called semaphore_signal().
        // Fall through and drain the wakeup.
    case DISPATCH_TIME_FOREVER:
#if USE_MACH_SEM
        do {
            kr = semaphore_wait(dsema->dsema_waiter_port);
        } while (kr == KERN_ABORTED);
        DISPATCH_SEMAPHORE_VERIFY_KR(kr);
#endif
        break;
    }

    goto again;
}
  1. 先检查所有的任务是否都执行完了,则调用wake,【并且处理特殊情况】
  2. 然后调用 semaphore_wait() 向 dsema->dsema_waiter_port 内核发送等待信号。

总结

信号量结构体里面,有一个计数器,每次wait 和 signal 的时候,都会改这个计数器,wait 的时候如果达到临界值,计数器为0,就会向内核发送中断的信号,体现为不继续向下执行。如果sign 被调用,如果没达到临界值,那就继续计数器增加,如果达到临界值,为0,就会向内核发送唤醒信号,然后让中断的代码继续执行。

对于group,实际就是创建信号量计数为long_max的信号量。所以不会等待,所有添加到group的任务都能立即执行。notify函数作用就是把block加到信号量里面的一个链表中,等所有的group都执行完后,遍历这个链表,执行notify。【不涉及内核的中断和恢复】
但是 group_wait 就和上面信号量等待类似,涉及内核的中断和恢复了。

你可能感兴趣的:(libdispatch源码分析—dispatch_group)