目录
中国剩余定理解释
中国剩余定理扩展——求解模数不互质情况下的线性方程组:
代码实现:
互质:
非互质:
在《孙子算经》中有这样一个问题:“今有物不知其数,三三数之剩二(除以3余2),五五数之剩三(除以5余3),七七数之剩二(除以7余2),问物几何?”这个问题称为“孙子问题”,该问题的一般解法国际上称为“中国剩余定理”。具体解法分三步:
就这么简单。我们在感叹神奇的同时不禁想知道古人是如何想到这个方法的,有什么基本的数学依据吗?
我们将“孙子问题”拆分成几个简单的小问题,从零开始,试图揣测古人是如何推导出这个解法的。
首先,我们假设n1是满足除以3余2的一个数,比如2,5,8等等,也就是满足3∗k+2(k>=0)的一个任意数。同样,我们假设n2是满足除以5余3的一个数,n3是满足除以7余2的一个数。
有了前面的假设,我们先从n1这个角度出发,已知n1满足除以3余2,能不能使得n1+n2的和仍然满足除以3余2?进而使得n1+n2+n3的和仍然满足除以3余2?
这就牵涉到一个最基本数学定理,如果有a%b=c,则有(a+k∗b)%b=c(k为非零整数),换句话说,如果一个除法运算的余数为c,那么被除数与kk倍的除数相加(或相减)的和(差)再与除数相除,余数不变。这个是很好证明的。
以此定理为依据,如果n2是3的倍数,n1+n2就依然满足除以3余2。同理,如果n3也是3的倍数,那么n1+n2+n3的和就满足除以3余2。这是从n1的角度考虑的,再从n2,n3的角度出发,我们可推导出以下三点:
因此,为使n1+n2+n3的和作为“孙子问题”的一个最终解,需满足:
所以,孙子问题解法的本质是从5和7的公倍数中找一个除以3余2的数n1,从3和7的公倍数中找一个除以5余3的数n2,从3和5的公倍数中找一个除以7余2的数n3,再将三个数相加得到解。在求n1,n2,n3时又用了一个小技巧,以n1为例,并非从5和7的公倍数中直接找一个除以3余2的数,而是先找一个除以3余1的数,再乘以2。也就是先求出5和7的公倍数模3下的逆元,再用逆元去乘余数。
这里又有一个数学公式,如果a%b=c,那么(a∗k)%b=a%b+a%b+…+a%b=c+c+…+c=k∗c(k>0),也就是说,如果一个除法的余数为c,那么被除数的k倍与除数相除的余数为k∗c。展开式中已证明。
最后,我们还要清楚一点,n1+n2+n3只是问题的一个解,并不是最小的解。如何得到最小解?我们只需要从中最大限度的减掉掉3,5,7的公倍数105即可。道理就是前面讲过的定理“如果a%b=ca%b=c,则有(a−k∗b)%b=c(a−k∗b)%b=c”。所以(n1+n2+n3)%105就是最终的最小解。
这样一来就得到了中国剩余定理的公式:
设正整数两两互素,则同余方程组
有整数解。并且在模下的解是唯一的,解为
其中,而为模的逆元。
普通的中国剩余定理要求所有的互素,那么如果不互素呢,怎么求解同余方程组?
这种情况就采用两两合并的思想,假设要合并如下两个方程:
那么得到:
我们需要求出一个最小的xx使它满足:
那么x1和x2就要尽可能的小,于是我们用扩展欧几里得算法求出x1的最小正整数解,将它代回a1+m1x1,得到xx的一个特解x′,当然也是最小正整数解。
所以xx的通解一定是x′加上lcm(m1,m2)∗klcm(m1,m2)∗k,这样才能保证x模m1和m2的余数是a1和a2。由此,我们把这个x′当做新的方程的余数,把lcm(m1,m2)当做新的方程的模数。(这一段是关键)
合并完成:
//求M%A=a,M%B=b,...中的M,其中A,B,C...互质
int CRT(int a[],int m[],int n){
int M = 1;
int ans = 0;
for(int i=1; i<=n; i++)
M *= m[i];
for(int i=1; i<=n; i++){
int x, y;
int Mi = M / m[i];
ex_gcd(Mi, m[i], x, y);
ans = (ans + Mi * x * a[i]) % M;
}
if(ans < 0) ans += M;
return ans;
}
bool merge(LL a1, LL m1, LL a2, LL m2, LL &a3, LL &m3) {
LL d = gcd(m1, m2);
LL c = a2 - a1;
if(c % d) return false;
c = (c % m2 + m2) % m2;
m1 /= d;
m2 /= d;
c /= d;
c *= Inv(m1, m2);//Inv为乘法逆元,数论常用内容——欧几里得算法与扩展欧几里得算法
c %= m2;
c *= m1 * d;
c += a1;
m3 = m1 * m2 * d;
a3 = (c % m3 + m3) % m3;
return true;
}
LL CRT(LL a[], LL m[], int n) {
LL a1 = a[1];
LL m1 = m[1];
for(int i=2; i<=n; i++) {
LL a2 = a[i];
LL m2 = m[i];
LL m3, a3;
if(!merge(a1, m1, a2, m2, a3, m3))
return -1;
a1 = a3;
m1 = m3;
}
return (a1 % m1 + m1) % m1;
}
参考:数论常用内容——中国剩余定理
下一篇:Codeforces Round 153 (Rated for Div. 2)
推荐音乐:沉沦于遐想