EncCu::compressCtu
初始化partitioning manager QTBTPartitioner partitioner
,这是VVC相比于HEVC增加的数据类型。
判断是否需要执行IBC模式(帧内块复制技术,屏幕内容编码的一种技术,参考区域不局限在相邻像素行,而是可以利用当前帧所有已编码区域,预测待编码CU)
初始化上下文指针,初始化乒乓buffertempCS
和bestCS
,递归执行xCompressCU
函数,对亮度分量进行预测。
判断是否开启了 CTU Dual Tree技术,如果开启,需要对色度分量进行一次预测。
注释后的代码如下
void EncCu::compressCtu( CodingStructure& cs, const UnitArea& area, const unsigned ctuRsAddr, const int prevQP[], const int currQP[] )
{
/*
input params:
cs: picture 级别的coding structure
area: 当前正编码CTU的区域
ctuRsAddr: 当前正编码CTU的raster-scan顺序
递归调用xCompressCU
*/
m_modeCtrl->initCTUEncoding( *cs.slice );
cs.treeType = TREE_D;
cs.slice->m_mapPltCost[0].clear();
cs.slice->m_mapPltCost[1].clear();
// init the partitioning manager
QTBTPartitioner partitioner;
partitioner.initCtu(area, CH_L, *cs.slice);
// IBC:屏幕内容编码,refer to https://blog.csdn.net/BigDream123/article/details/125185687
if (m_pcEncCfg->getIBCMode())
{
if (area.lx() == 0 && area.ly() == 0)
{
m_pcInterSearch->resetIbcSearch();
}
m_pcInterSearch->resetCtuRecord();
m_ctuIbcSearchRangeX = m_pcEncCfg->getIBCLocalSearchRangeX();
m_ctuIbcSearchRangeY = m_pcEncCfg->getIBCLocalSearchRangeY();
}
// IBC优先通过哈希搜索的方式进行块匹配
if (m_pcEncCfg->getIBCMode() && m_pcEncCfg->getIBCHashSearch() && (m_pcEncCfg->getIBCFastMethod() & IBC_FAST_METHOD_ADAPTIVE_SEARCHRANGE))
{
const int hashHitRatio = m_ibcHashMap.getHashHitRatio(area.Y()); // in percent
if (hashHitRatio < 5) // 5%
{
m_ctuIbcSearchRangeX >>= 1;
m_ctuIbcSearchRangeY >>= 1;
}
if (cs.slice->getNumRefIdx(REF_PIC_LIST_0) > 0)
{
m_ctuIbcSearchRangeX >>= 1;
m_ctuIbcSearchRangeY >>= 1;
}
}
// init current context pointer
m_CurrCtx = m_CtxBuffer.data();
// tempCS和bestCS作为乒乓buffer(ping-pong buffer),即使用多个低速的数据预处理模块处理高速的数据输入流, e.g. 一个buffer写入数据的时候,另外一个buffer进行数据处理,
// tempCS存储test模式的数据,bestCS存储当前最优模式
CodingStructure *tempCS = m_pTempCS[gp_sizeIdxInfo->idxFrom( area.lumaSize().width )][gp_sizeIdxInfo->idxFrom( area.lumaSize().height )];
CodingStructure *bestCS = m_pBestCS[gp_sizeIdxInfo->idxFrom( area.lumaSize().width )][gp_sizeIdxInfo->idxFrom( area.lumaSize().height )];
cs.initSubStructure(*tempCS, partitioner.chType, partitioner.currArea(), false);
cs.initSubStructure(*bestCS, partitioner.chType, partitioner.currArea(), false);
tempCS->currQP[CH_L] = bestCS->currQP[CH_L] =
tempCS->baseQP = bestCS->baseQP = currQP[CH_L];
tempCS->prevQP[CH_L] = bestCS->prevQP[CH_L] = prevQP[CH_L];
xCompressCU(tempCS, bestCS, partitioner); // 第一次调用xCompressCU对亮度分量进行预测
cs.slice->m_mapPltCost[0].clear();
cs.slice->m_mapPltCost[1].clear();
// all signals were already copied during compression if the CTU was split - at this point only the structures are copied to the top level CS
const bool copyUnsplitCTUSignals = bestCS->cus.size() == 1;
cs.useSubStructure(*bestCS, partitioner.chType, CS::getArea(*bestCS, area, partitioner.chType), copyUnsplitCTUSignals,
false, false, copyUnsplitCTUSignals, true);
// CTU Dual-Tree: for HEVC, 亮度和色度的划分方式相同;for VVC, P&B Slice的亮度和色度划分方式相同, I Slice的亮度和色度划分方式不同, 即dual-tree
// 大多数时候,亮度的纹理比色度更加细节, refer to https://blog.csdn.net/fangz142/article/details/123080611
if (CS::isDualITree (cs) && isChromaEnabled (cs.pcv->chrFormat))
{
m_CABACEstimator->getCtx() = m_CurrCtx->start;
partitioner.initCtu(area, CH_C, *cs.slice);
cs.initSubStructure(*tempCS, partitioner.chType, partitioner.currArea(), false);
cs.initSubStructure(*bestCS, partitioner.chType, partitioner.currArea(), false);
tempCS->currQP[CH_C] = bestCS->currQP[CH_C] =
tempCS->baseQP = bestCS->baseQP = currQP[CH_C];
tempCS->prevQP[CH_C] = bestCS->prevQP[CH_C] = prevQP[CH_C];
xCompressCU(tempCS, bestCS, partitioner); // 第二次调用xCompressCU对色度分量进行预测
const bool copyUnsplitCTUSignals = bestCS->cus.size() == 1;
cs.useSubStructure(*bestCS, partitioner.chType, CS::getArea(*bestCS, area, partitioner.chType),
copyUnsplitCTUSignals, false, false, copyUnsplitCTUSignals, true);
}
if (m_pcEncCfg->getUseRateCtrl())
{
(m_pcRateCtrl->getRCPic()->getLCU(ctuRsAddr)).m_actualMSE = (double)bestCS->dist / (double)m_pcRateCtrl->getRCPic()->getLCU(ctuRsAddr).m_numberOfPixel;
}
// reset context states and uninit context pointer
m_CABACEstimator->getCtx() = m_CurrCtx->start;
m_CurrCtx = 0;
// Ensure that a coding was found
// Selected mode's RD-cost must be not MAX_DOUBLE.
CHECK( bestCS->cus.empty() , "No possible encoding found" );
CHECK( bestCS->cus[0]->predMode == NUMBER_OF_PREDICTION_MODES, "No possible encoding found" );
CHECK( bestCS->cost == MAX_DOUBLE , "No possible encoding found" );
}
EncCu::xCompressCU
xCheckModeSplit
函数会调用xCompressCU
尝试QT、BT和TT划分,tempCS
用来存储当前compress区域各种模式下的数据,m_modeCtrl
维护需要测试的mode,通过一个do-while循环,尝试各种划分模式。
void EncCu::xCompressCU( CodingStructure*& tempCS, CodingStructure*& bestCS, Partitioner& partitioner, double maxCostAllowed )
{
/*
xCheckModeSplit函数会调用xCompressCU,尝试更小的划分
*/
CHECK(maxCostAllowed < 0, "Wrong value of maxCostAllowed!");
// ============================== INITIALIZE ====================================== //
uint32_t compBegin;
uint32_t numComp;
bool jointPLT = false; // palette模式
if (partitioner.isSepTree( *tempCS ))
{
if( !CS::isDualITree(*tempCS) && partitioner.treeType != TREE_D )
{
compBegin = COMPONENT_Y;
numComp = (tempCS->area.chromaFormat != CHROMA_400)?3: 1;
jointPLT = true;
}
else
{
if (isLuma(partitioner.chType))
{
compBegin = COMPONENT_Y;
numComp = 1;
}
else
{
compBegin = COMPONENT_Cb;
numComp = 2;
}
}
}
else
{
compBegin = COMPONENT_Y;
numComp = (tempCS->area.chromaFormat != CHROMA_400) ? 3 : 1;
jointPLT = true;
}
SplitSeries splitmode = -1;
uint8_t bestLastPLTSize[MAX_NUM_CHANNEL_TYPE];
Pel bestLastPLT[MAX_NUM_COMPONENT][MAXPLTPREDSIZE]; // store LastPLT for
uint8_t curLastPLTSize[MAX_NUM_CHANNEL_TYPE];
Pel curLastPLT[MAX_NUM_COMPONENT][MAXPLTPREDSIZE]; // store LastPLT if no partition
for (int i = compBegin; i < (compBegin + numComp); i++)
{
ComponentID comID = jointPLT ? (ComponentID)compBegin : ((i > 0) ? COMPONENT_Cb : COMPONENT_Y);
bestLastPLTSize[comID] = 0;
curLastPLTSize[comID] = tempCS->prevPLT.curPLTSize[comID];
memcpy(curLastPLT[i], tempCS->prevPLT.curPLT[i], tempCS->prevPLT.curPLTSize[comID] * sizeof(Pel));
}
// begin
Slice& slice = *tempCS->slice;
const PPS &pps = *tempCS->pps;
const SPS &sps = *tempCS->sps;
const uint32_t uiLPelX = tempCS->area.Y().lumaPos().x;
const uint32_t uiTPelY = tempCS->area.Y().lumaPos().y;
const ModeType modeTypeParent = partitioner.modeType;
const TreeType treeTypeParent = partitioner.treeType;
const ChannelType chTypeParent = partitioner.chType;
const UnitArea currCsArea = clipArea( CS::getArea( *bestCS, bestCS->area, partitioner.chType ), *tempCS->picture );
tempCS->splitRdCostBest = nullptr;
m_modeCtrl->initCULevel( partitioner, *tempCS ); // 该函数对m_modeCtrl进行初始化,对需要test的各个模式进行压栈
#if GDR_ENABLED
// DGR(Gradual Decoder Refresh)帧,将一个完整的I帧切片,分别放在前面的多个连续P帧中,可以避免传递I帧造成的网络流量抖动和堵塞
// refer to https://blog.csdn.net/zg_xd/article/details/107870369
if (m_pcEncCfg->getGdrEnabled())
{
bool isInGdrInterval = slice.getPicHeader()->getInGdrInterval();
// 1.0 applicable to inter picture only
if (isInGdrInterval)
{
int gdrPocStart = m_pcEncCfg->getGdrPocStart();
int gdrInterval = m_pcEncCfg->getGdrInterval();
int gdrPeriod = m_pcEncCfg->getGdrPeriod();
int picWidth = slice.getPPS()->getPicWidthInLumaSamples();
int m1, m2, n1;
int curPoc = slice.getPOC();
int gdrPoc = (curPoc - gdrPocStart) % gdrPeriod;
int begGdrX = 0;
int endGdrX = 0;
double dd = (picWidth / (double)gdrInterval);
int mm = (int)((picWidth / (double)gdrInterval) + 0.49999);
m1 = ((mm + 7) >> 3) << 3;
m2 = ((mm + 0) >> 3) << 3;
if (dd > mm && m1 == m2)
{
m1 = m1 + 8;
}
n1 = (picWidth - m2 * gdrInterval) / 8;
if (gdrPoc < n1)
{
begGdrX = m1 * gdrPoc;
endGdrX = begGdrX + m1;
}
else
{
begGdrX = m1 * n1 + m2 * (gdrPoc - n1);
endGdrX = begGdrX + m2;
if (picWidth <= endGdrX)
{
begGdrX = picWidth;
endGdrX = picWidth;
}
}
bool isInRefreshArea = tempCS->withinRefresh(begGdrX, endGdrX);
if (isInRefreshArea)
{
m_modeCtrl->forceIntraMode();
}
else if (tempCS->containRefresh(begGdrX, endGdrX) || tempCS->overlapRefresh(begGdrX, endGdrX))
{
// 1.3.1 enable only vertical splits (QT, BT_V, TT_V)
m_modeCtrl->forceVerSplitOnly();
// 1.3.2 remove TT_V if it does not satisfy the condition
if (tempCS->refreshCrossTTV(begGdrX, endGdrX))
{
m_modeCtrl->forceRemoveTTV();
}
}
if (tempCS->area.lwidth() != tempCS->area.lheight())
{
m_modeCtrl->forceRemoveQT();
}
if (!m_modeCtrl->anyPredModeLeft())
{
m_modeCtrl->forceRemoveDontSplit();
}
if (isInRefreshArea && !m_modeCtrl->anyIntraIBCMode() && (tempCS->area.lwidth() == 4 || tempCS->area.lheight() == 4))
{
m_modeCtrl->finishCULevel(partitioner);
return;
}
}
}
#endif
if (partitioner.currQtDepth == 0 && partitioner.currMtDepth == 0 && !tempCS->slice->isIntra()
&& (sps.getUseSBT() || sps.getExplicitMtsInterEnabled()))
{
auto slsSbt = dynamic_cast( m_modeCtrl );
int maxSLSize = sps.getUseSBT() ? tempCS->slice->getSPS()->getMaxTbSize() : MTS_INTER_MAX_CU_SIZE;
slsSbt->resetSaveloadSbt( maxSLSize );
}
m_sbtCostSave[0] = m_sbtCostSave[1] = MAX_DOUBLE;
m_CurrCtx->start = m_CABACEstimator->getCtx();
if( slice.getUseChromaQpAdj() )
{
// TODO M0133 : double check encoder decisions with respect to chroma QG detection and actual encode
int lgMinCuSize = sps.getLog2MinCodingBlockSize() +
std::max(0, floorLog2(sps.getCTUSize()) - sps.getLog2MinCodingBlockSize() - int((slice.getCuChromaQpOffsetSubdiv()+1) / 2));
if( partitioner.currQgChromaEnable() )
{
m_cuChromaQpOffsetIdxPlus1 = ( ( uiLPelX >> lgMinCuSize ) + ( uiTPelY >> lgMinCuSize ) ) % ( pps.getChromaQpOffsetListLen() + 1 );
}
}
else
{
m_cuChromaQpOffsetIdxPlus1 = 0;
}
// m_modeCtrl初始化后,如果没有可以test的模式,那么直接return
if( !m_modeCtrl->anyMode() )
{
m_modeCtrl->finishCULevel( partitioner );
return;
}
DTRACE_UPDATE( g_trace_ctx, std::make_pair( "cux", uiLPelX ) );
DTRACE_UPDATE( g_trace_ctx, std::make_pair( "cuy", uiTPelY ) );
DTRACE_UPDATE( g_trace_ctx, std::make_pair( "cuw", tempCS->area.lwidth() ) );
DTRACE_UPDATE( g_trace_ctx, std::make_pair( "cuh", tempCS->area.lheight() ) );
DTRACE( g_trace_ctx, D_COMMON, "@(%4d,%4d) [%2dx%2d]\n", tempCS->area.lx(), tempCS->area.ly(), tempCS->area.lwidth(), tempCS->area.lheight() );
m_pcInterSearch->resetSavedAffineMotion();
double bestIntPelCost = MAX_DOUBLE;
if (tempCS->slice->getSPS()->getUseColorTrans())
{
tempCS->tmpColorSpaceCost = MAX_DOUBLE;
bestCS->tmpColorSpaceCost = MAX_DOUBLE;
tempCS->firstColorSpaceSelected = true;
bestCS->firstColorSpaceSelected = true;
}
if (tempCS->slice->getSPS()->getUseColorTrans() && !CS::isDualITree(*tempCS))
{
tempCS->firstColorSpaceTestOnly = false;
bestCS->firstColorSpaceTestOnly = false;
tempCS->tmpColorSpaceIntraCost[0] = MAX_DOUBLE;
tempCS->tmpColorSpaceIntraCost[1] = MAX_DOUBLE;
bestCS->tmpColorSpaceIntraCost[0] = MAX_DOUBLE;
bestCS->tmpColorSpaceIntraCost[1] = MAX_DOUBLE;
if (tempCS->bestParent && tempCS->bestParent->firstColorSpaceTestOnly)
{
tempCS->firstColorSpaceTestOnly = bestCS->firstColorSpaceTestOnly = true;
}
}
double splitRdCostBest[NUM_PART_SPLIT];
std::fill(std::begin(splitRdCostBest), std::end(splitRdCostBest), MAX_DOUBLE);
if (tempCS->slice->getCheckLDC())
{
m_bestBcwCost[0] = m_bestBcwCost[1] = std::numeric_limits::max();
m_bestBcwIdx[0] = m_bestBcwIdx[1] = -1;
}
// ============================== MAIN LOOP ====================================== //
do
{
for (int i = compBegin; i < (compBegin + numComp); i++)
{
ComponentID comID = jointPLT ? (ComponentID)compBegin : ((i > 0) ? COMPONENT_Cb : COMPONENT_Y);
tempCS->prevPLT.curPLTSize[comID] = curLastPLTSize[comID];
memcpy(tempCS->prevPLT.curPLT[i], curLastPLT[i], curLastPLTSize[comID] * sizeof(Pel));
}
EncTestMode currTestMode = m_modeCtrl->currTestMode(); // 获取需要test的模式
currTestMode.maxCostAllowed = maxCostAllowed;
if (pps.getUseDQP() && partitioner.isSepTree(*tempCS) && isChroma( partitioner.chType ))
{
const Position chromaCentral(tempCS->area.Cb().chromaPos().offset(tempCS->area.Cb().chromaSize().width >> 1, tempCS->area.Cb().chromaSize().height >> 1));
const Position lumaRefPos(chromaCentral.x << getComponentScaleX(COMPONENT_Cb, tempCS->area.chromaFormat), chromaCentral.y << getComponentScaleY(COMPONENT_Cb, tempCS->area.chromaFormat));
const CodingStructure* baseCS = bestCS->picture->cs;
const CodingUnit* colLumaCu = baseCS->getCU(lumaRefPos, CHANNEL_TYPE_LUMA);
if (colLumaCu)
{
currTestMode.qp = colLumaCu->qp;
}
}
#if SHARP_LUMA_DELTA_QP || ENABLE_QPA_SUB_CTU
if (partitioner.currQgEnable() && (
(m_pcEncCfg->getBIM()) ||
#if SHARP_LUMA_DELTA_QP
(m_pcEncCfg->getLumaLevelToDeltaQPMapping().isEnabled()) ||
#endif
(m_pcEncCfg->getSmoothQPReductionEnable()) ||
#if ENABLE_QPA_SUB_CTU
(m_pcEncCfg->getUsePerceptQPA() && !m_pcEncCfg->getUseRateCtrl() && pps.getUseDQP())
#else
false
#endif
))
{
if (currTestMode.qp >= 0)
{
updateLambda (&slice, currTestMode.qp,
#if WCG_EXT && ER_CHROMA_QP_WCG_PPS
m_pcEncCfg->getWCGChromaQPControl().isEnabled(),
#endif
CS::isDualITree (*tempCS) || (partitioner.currDepth == 0));
}
}
#endif
if( currTestMode.type == ETM_INTER_ME )
{
if( ( currTestMode.opts & ETO_IMV ) != 0 )
{
const bool skipAltHpelIF = ( int( ( currTestMode.opts & ETO_IMV ) >> ETO_IMV_SHIFT ) == 4 ) && ( bestIntPelCost > 1.25 * bestCS->cost );
if (!skipAltHpelIF)
{
tempCS->bestCS = bestCS;
xCheckRDCostInterIMV(tempCS, bestCS, partitioner, currTestMode, bestIntPelCost); // 整像素inter ME, 1 pel and 4 pel
tempCS->bestCS = nullptr;
splitRdCostBest[CTU_LEVEL] = bestCS->cost;
tempCS->splitRdCostBest = splitRdCostBest;
}
}
else
{
tempCS->bestCS = bestCS;
xCheckRDCostInter( tempCS, bestCS, partitioner, currTestMode ); // 帧间inter ME模式
tempCS->bestCS = nullptr;
splitRdCostBest[CTU_LEVEL] = bestCS->cost;
tempCS->splitRdCostBest = splitRdCostBest;
}
}
else if (currTestMode.type == ETM_HASH_INTER)
{
xCheckRDCostHashInter( tempCS, bestCS, partitioner, currTestMode );
splitRdCostBest[CTU_LEVEL] = bestCS->cost;
tempCS->splitRdCostBest = splitRdCostBest;
}
else if( currTestMode.type == ETM_AFFINE )
{
xCheckRDCostAffineMerge2Nx2N( tempCS, bestCS, partitioner, currTestMode ); // Affine merge模式
splitRdCostBest[CTU_LEVEL] = bestCS->cost;
tempCS->splitRdCostBest = splitRdCostBest;
}
#if REUSE_CU_RESULTS
else if( currTestMode.type == ETM_RECO_CACHED )
{
xReuseCachedResult( tempCS, bestCS, partitioner );
splitRdCostBest[CTU_LEVEL] = bestCS->cost;
tempCS->splitRdCostBest = splitRdCostBest;
}
#endif
else if( currTestMode.type == ETM_MERGE_SKIP )
{
xCheckRDCostMerge2Nx2N( tempCS, bestCS, partitioner, currTestMode ); // merge模式
CodingUnit* cu = bestCS->getCU(partitioner.chType);
if (cu)
{
cu->mmvdSkip = cu->skip == false ? false : cu->mmvdSkip;
}
splitRdCostBest[CTU_LEVEL] = bestCS->cost;
tempCS->splitRdCostBest = splitRdCostBest;
}
else if( currTestMode.type == ETM_MERGE_GEO )
{
xCheckRDCostMergeGeo2Nx2N( tempCS, bestCS, partitioner, currTestMode ); // mergeGeo模式
splitRdCostBest[CTU_LEVEL] = bestCS->cost;
tempCS->splitRdCostBest = splitRdCostBest;
}
else if( currTestMode.type == ETM_INTRA )
{
if (slice.getSPS()->getUseColorTrans() && !CS::isDualITree(*tempCS))
{
bool skipSecColorSpace = false;
skipSecColorSpace = xCheckRDCostIntra(tempCS, bestCS, partitioner, currTestMode, (m_pcEncCfg->getRGBFormatFlag() ? true : false)); // intra模式
if ((m_pcEncCfg->getCostMode() == COST_LOSSLESS_CODING && slice.isLossless()) && !m_pcEncCfg->getRGBFormatFlag())
{
skipSecColorSpace = true;
}
if (!skipSecColorSpace && !tempCS->firstColorSpaceTestOnly)
{
xCheckRDCostIntra(tempCS, bestCS, partitioner, currTestMode, (m_pcEncCfg->getRGBFormatFlag() ? false : true));
}
if (!tempCS->firstColorSpaceTestOnly)
{
if (tempCS->tmpColorSpaceIntraCost[0] != MAX_DOUBLE && tempCS->tmpColorSpaceIntraCost[1] != MAX_DOUBLE)
{
double skipCostRatio = m_pcEncCfg->getRGBFormatFlag() ? 1.1 : 1.0;
if (tempCS->tmpColorSpaceIntraCost[1] > (skipCostRatio*tempCS->tmpColorSpaceIntraCost[0]))
{
tempCS->firstColorSpaceTestOnly = bestCS->firstColorSpaceTestOnly = true;
}
}
}
else
{
CHECK(tempCS->tmpColorSpaceIntraCost[1] != MAX_DOUBLE, "the RD test of the second color space should be skipped");
}
}
else
{
xCheckRDCostIntra(tempCS, bestCS, partitioner, currTestMode, false);
}
splitRdCostBest[CTU_LEVEL] = bestCS->cost;
tempCS->splitRdCostBest = splitRdCostBest;
}
else if (currTestMode.type == ETM_PALETTE)
{
xCheckPLT( tempCS, bestCS, partitioner, currTestMode );
splitRdCostBest[CTU_LEVEL] = bestCS->cost;
tempCS->splitRdCostBest = splitRdCostBest;
}
else if (currTestMode.type == ETM_IBC)
{
xCheckRDCostIBCMode(tempCS, bestCS, partitioner, currTestMode);
splitRdCostBest[CTU_LEVEL] = bestCS->cost;
tempCS->splitRdCostBest = splitRdCostBest;
}
else if (currTestMode.type == ETM_IBC_MERGE)
{
xCheckRDCostIBCModeMerge2Nx2N(tempCS, bestCS, partitioner, currTestMode); // IBC模式
splitRdCostBest[CTU_LEVEL] = bestCS->cost;
tempCS->splitRdCostBest = splitRdCostBest;
}
else if( isModeSplit( currTestMode ) )
{
// QT,BT, TT划分
if (bestCS->cus.size() != 0)
{
splitmode = bestCS->cus[0]->splitSeries;
}
assert( partitioner.modeType == tempCS->modeType );
int signalModeConsVal = tempCS->signalModeCons( getPartSplit( currTestMode ), partitioner, modeTypeParent );
int numRoundRdo = signalModeConsVal == LDT_MODE_TYPE_SIGNAL ? 2 : 1;
bool skipInterPass = false;
for( int i = 0; i < numRoundRdo; i++ )
{
//change cons modes
if( signalModeConsVal == LDT_MODE_TYPE_SIGNAL )
{
CHECK( numRoundRdo != 2, "numRoundRdo shall be 2 - [LDT_MODE_TYPE_SIGNAL]" );
tempCS->modeType = partitioner.modeType = (i == 0) ? MODE_TYPE_INTER : MODE_TYPE_INTRA;
}
else if( signalModeConsVal == LDT_MODE_TYPE_INFER )
{
CHECK( numRoundRdo != 1, "numRoundRdo shall be 1 - [LDT_MODE_TYPE_INFER]" );
tempCS->modeType = partitioner.modeType = MODE_TYPE_INTRA;
}
else if( signalModeConsVal == LDT_MODE_TYPE_INHERIT )
{
CHECK( numRoundRdo != 1, "numRoundRdo shall be 1 - [LDT_MODE_TYPE_INHERIT]" );
tempCS->modeType = partitioner.modeType = modeTypeParent;
}
//for lite intra encoding fast algorithm, set the status to save inter coding info
if( modeTypeParent == MODE_TYPE_ALL && tempCS->modeType == MODE_TYPE_INTER )
{
m_pcIntraSearch->setSaveCuCostInSCIPU( true );
m_pcIntraSearch->setNumCuInSCIPU( 0 );
}
else if( modeTypeParent == MODE_TYPE_ALL && tempCS->modeType != MODE_TYPE_INTER )
{
m_pcIntraSearch->setSaveCuCostInSCIPU( false );
if( tempCS->modeType == MODE_TYPE_ALL )
{
m_pcIntraSearch->setNumCuInSCIPU( 0 );
}
}
// check QT、BT和TT划分
xCheckModeSplit( tempCS, bestCS, partitioner, currTestMode, modeTypeParent, skipInterPass, splitRdCostBest );
tempCS->splitRdCostBest = splitRdCostBest;
//recover cons modes
tempCS->modeType = partitioner.modeType = modeTypeParent;
tempCS->treeType = partitioner.treeType = treeTypeParent;
partitioner.chType = chTypeParent;
if( modeTypeParent == MODE_TYPE_ALL )
{
m_pcIntraSearch->setSaveCuCostInSCIPU( false );
if( numRoundRdo == 2 && tempCS->modeType == MODE_TYPE_INTRA )
{
m_pcIntraSearch->initCuAreaCostInSCIPU();
}
}
if( skipInterPass )
{
break;
}
}
#if GDR_ENABLED
if (bestCS->cus.size() > 0 && splitmode != bestCS->cus[0]->splitSeries)
#else
if (splitmode != bestCS->cus[0]->splitSeries)
#endif
{
splitmode = bestCS->cus[0]->splitSeries;
const CodingUnit& cu = *bestCS->cus.front();
cu.cs->prevPLT = bestCS->prevPLT;
for (int i = compBegin; i < (compBegin + numComp); i++)
{
ComponentID comID = jointPLT ? (ComponentID)compBegin : ((i > 0) ? COMPONENT_Cb : COMPONENT_Y);
bestLastPLTSize[comID] = bestCS->cus[0]->cs->prevPLT.curPLTSize[comID];
memcpy(bestLastPLT[i], bestCS->cus[0]->cs->prevPLT.curPLT[i], bestCS->cus[0]->cs->prevPLT.curPLTSize[comID] * sizeof(Pel));
}
}
}
else
{
THROW( "Don't know how to handle mode: type = " << currTestMode.type << ", options = " << currTestMode.opts );
}
} while( m_modeCtrl->nextMode( *tempCS, partitioner ) ); // m_modeCtrl->nextMode将当前mode出栈,返回bool值判断是否还有mode需要test
// ============================== END LOOP ====================================== //
// ============================== FINISH ====================================== //
// Finishing CU, 将最优划分模式和最优划分方法都存储在bestCS中
if( tempCS->cost == MAX_DOUBLE && bestCS->cost == MAX_DOUBLE )
{
//although some coding modes were planned to be tried in RDO, no coding mode actually finished encoding due to early termination
//thus tempCS->cost and bestCS->cost are both MAX_DOUBLE; in this case, skip the following process for normal case
m_modeCtrl->finishCULevel( partitioner );
return;
}
// 更新参数
// set context states
m_CABACEstimator->getCtx() = m_CurrCtx->best;
// QP from last processed CU for further processing
// copy the qp of the last non-chroma CU
int numCUInThisNode = (int)bestCS->cus.size();
if( numCUInThisNode > 1 && bestCS->cus.back()->chType == CHANNEL_TYPE_CHROMA && !CS::isDualITree( *bestCS ) )
{
CHECK( bestCS->cus[numCUInThisNode-2]->chType != CHANNEL_TYPE_LUMA, "wrong chType" );
bestCS->prevQP[partitioner.chType] = bestCS->cus[numCUInThisNode-2]->qp;
}
else
{
bestCS->prevQP[partitioner.chType] = bestCS->cus.back()->qp;
}
if ((!slice.isIntra() || slice.getSPS()->getIBCFlag()) && partitioner.chType == CHANNEL_TYPE_LUMA
&& bestCS->cus.size() == 1 && (CU::isInter(*bestCS->cus.back()) || CU::isIBC(*bestCS->cus.back()))
&& bestCS->area.Y() == (*bestCS->cus.back()).Y())
{
const CodingUnit& cu = *bestCS->cus.front();
bool isIbcSmallBlk = CU::isIBC(cu) && (cu.lwidth() * cu.lheight() <= 16);
CU::saveMotionInHMVP( cu, isIbcSmallBlk ); // 更新HMVP列表
}
// 将最优模式的重建像素copy给picture
bestCS->picture->getPredBuf(currCsArea).copyFrom(bestCS->getPredBuf(currCsArea));
bestCS->picture->getRecoBuf(currCsArea ).copyFrom( bestCS->getRecoBuf( currCsArea ) );
m_modeCtrl->finishCULevel( partitioner ); // m_modelCtrl->finishCULevel
if( m_pcIntraSearch->getSaveCuCostInSCIPU() && bestCS->cus.size() == 1 )
{
m_pcIntraSearch->saveCuAreaCostInSCIPU( Area( partitioner.currArea().lumaPos(), partitioner.currArea().lumaSize() ), bestCS->cost );
}
if (bestCS->cus.size() == 1) // no partition
{
CHECK(bestCS->cus[0]->tileIdx != bestCS->pps->getTileIdx(bestCS->area.lumaPos()), "Wrong tile index!");
if (CU::isPLT(*bestCS->cus[0]))
{
for (int i = compBegin; i < (compBegin + numComp); i++)
{
ComponentID comID = jointPLT ? (ComponentID)compBegin : ((i > 0) ? COMPONENT_Cb : COMPONENT_Y);
bestCS->prevPLT.curPLTSize[comID] = curLastPLTSize[comID];
memcpy(bestCS->prevPLT.curPLT[i], curLastPLT[i], curLastPLTSize[comID] * sizeof(Pel));
}
bestCS->reorderPrevPLT(bestCS->prevPLT, bestCS->cus[0]->curPLTSize, bestCS->cus[0]->curPLT, bestCS->cus[0]->reuseflag, compBegin, numComp, jointPLT);
}
else
{
for (int i = compBegin; i<(compBegin + numComp); i++)
{
ComponentID comID = jointPLT ? (ComponentID)compBegin : ((i > 0) ? COMPONENT_Cb : COMPONENT_Y);
bestCS->prevPLT.curPLTSize[comID] = curLastPLTSize[comID];
memcpy(bestCS->prevPLT.curPLT[i], curLastPLT[i], bestCS->prevPLT.curPLTSize[comID] * sizeof(Pel));
}
}
}
else
{
for (int i = compBegin; i<(compBegin + numComp); i++)
{
ComponentID comID = jointPLT ? (ComponentID)compBegin : ((i > 0) ? COMPONENT_Cb : COMPONENT_Y);
bestCS->prevPLT.curPLTSize[comID] = bestLastPLTSize[comID];
memcpy(bestCS->prevPLT.curPLT[i], bestLastPLT[i], bestCS->prevPLT.curPLTSize[comID] * sizeof(Pel));
}
}
const CodingUnit& cu = *bestCS->cus.front();
cu.cs->prevPLT = bestCS->prevPLT;
// Assert if Best prediction mode is NONE
// Selected mode's RD-cost must be not MAX_DOUBLE.
CHECK( bestCS->cus.empty() , "No possible encoding found" );
CHECK( bestCS->cus[0]->predMode == NUMBER_OF_PREDICTION_MODES, "No possible encoding found" );
CHECK( bestCS->cost == MAX_DOUBLE , "No possible encoding found" );
}
xCheckModeSplit
该函数的主要部分是一个do-while循环,遍历子CU的区域,和x265相同的是,也会比较当前累计的cost和最优cost,用来进行提前终止。
该部分的代码和注释:
void EncCu::xCheckModeSplit(CodingStructure *&tempCS, CodingStructure *&bestCS, Partitioner &partitioner, const EncTestMode& encTestMode, const ModeType modeTypeParent, bool &skipInterPass, double *splitRdCostBest )
{
const int qp = encTestMode.qp;
const Slice &slice = *tempCS->slice;
const int oldPrevQp = tempCS->prevQP[partitioner.chType];
const auto oldMotionLut = tempCS->motionLut; // LUT(Look Up Table) 用于熵解码
#if ENABLE_QPA_SUB_CTU
const PPS &pps = *tempCS->pps;
const uint32_t currDepth = partitioner.currDepth;
#endif
const auto oldPLT = tempCS->prevPLT;
const PartSplit split = getPartSplit( encTestMode ); // 获取需要测试的划分模式
const ModeType modeTypeChild = partitioner.modeType; // 子节点的模式类型
CHECK( split == CU_DONT_SPLIT, "No proper split provided!" );
tempCS->initStructData( qp );
m_CABACEstimator->getCtx() = m_CurrCtx->start;
const TempCtx ctxStartSP( m_CtxCache, SubCtx( Ctx::SplitFlag, m_CABACEstimator->getCtx() ) );
const TempCtx ctxStartQt( m_CtxCache, SubCtx( Ctx::SplitQtFlag, m_CABACEstimator->getCtx() ) );
const TempCtx ctxStartHv( m_CtxCache, SubCtx( Ctx::SplitHvFlag, m_CABACEstimator->getCtx() ) );
const TempCtx ctxStart12( m_CtxCache, SubCtx( Ctx::Split12Flag, m_CABACEstimator->getCtx() ) );
const TempCtx ctxStartMC( m_CtxCache, SubCtx( Ctx::ModeConsFlag, m_CABACEstimator->getCtx() ) );
m_CABACEstimator->resetBits();
m_CABACEstimator->split_cu_mode( split, *tempCS, partitioner ); // 设置划分CU的模式
m_CABACEstimator->mode_constraint( split, *tempCS, partitioner, modeTypeChild ); // 设置模式限制
double costTemp = 0;
// m_pcEncCfg->getFastAdaptCostPredMode() "Mode for split cost prediction, 0..2 (Default: 0)"
if( m_pcEncCfg->getFastAdaptCostPredMode() == 2 )
{
int numChild = 3;
if( split == CU_VERT_SPLIT || split == CU_HORZ_SPLIT )
{
numChild--;
}
else if( split == CU_QUAD_SPLIT )
{
numChild++;
}
int64_t approxBits = numChild << SCALE_BITS;
const double factor = ( tempCS->currQP[partitioner.chType] > 30 ? 1.11 : 1.085 )
+ ( isChroma( partitioner.chType ) ? 0.2 : 0.0 ); // 计算cost的因子,如果当前块的QP>30,设置为1.11,否则设置为1.085
costTemp = m_pcRdCost->calcRdCost( uint64_t( m_CABACEstimator->getEstFracBits() + approxBits + ( ( bestCS->fracBits ) / factor ) ), Distortion( bestCS->dist / factor ) ) + bestCS->costDbOffset / factor;
}
else if ( m_pcEncCfg->getFastAdaptCostPredMode() == 1)
{
const double factor = ( tempCS->currQP[partitioner.chType] > 30 ? 1.1 : 1.075 )
+ (isChroma(partitioner.chType) ? 0.2 : 0.0);
costTemp = m_pcRdCost->calcRdCost( uint64_t( m_CABACEstimator->getEstFracBits() + ( ( bestCS->fracBits ) / factor ) ), Distortion( bestCS->dist / factor ) ) + bestCS->costDbOffset / factor;
}
else
{
// Default
const double factor = ( tempCS->currQP[partitioner.chType] > 30 ? 1.1 : 1.075 );
costTemp = m_pcRdCost->calcRdCost( uint64_t( m_CABACEstimator->getEstFracBits() + ( ( bestCS->fracBits ) / factor ) ), Distortion( bestCS->dist / factor ) ) + bestCS->costDbOffset / factor;
}
tempCS->useDbCost = m_pcEncCfg->getUseEncDbOpt();
if( !tempCS->useDbCost )
{
CHECK( bestCS->costDbOffset != 0, "error" );
}
const double cost = costTemp;
// 更新上下文参数
m_CABACEstimator->getCtx() = SubCtx( Ctx::SplitFlag, ctxStartSP );
m_CABACEstimator->getCtx() = SubCtx( Ctx::SplitQtFlag, ctxStartQt );
m_CABACEstimator->getCtx() = SubCtx( Ctx::SplitHvFlag, ctxStartHv );
m_CABACEstimator->getCtx() = SubCtx( Ctx::Split12Flag, ctxStart12 );
m_CABACEstimator->getCtx() = SubCtx( Ctx::ModeConsFlag, ctxStartMC );
// 如果上下文预测的cost > bestCS.cost,则重置上下文状态并确认beseCS
if (cost > bestCS->cost + bestCS->costDbOffset
#if ENABLE_QPA_SUB_CTU
|| (m_pcEncCfg->getUsePerceptQPA() && !m_pcEncCfg->getUseRateCtrl() && pps.getUseDQP() && (slice.getCuQpDeltaSubdiv() > 0) && (split == CU_HORZ_SPLIT || split == CU_VERT_SPLIT) &&
(currDepth == 0)) // force quad-split or no split at CTU level
#endif
)
{
xCheckBestMode( tempCS, bestCS, partitioner, encTestMode );
return;
}
const bool chromaNotSplit = modeTypeParent == MODE_TYPE_ALL && modeTypeChild == MODE_TYPE_INTRA ? true : false; // 父节点的所有类型都ok,且子节点为MODE_TYPE_INTRA时, chromaNotSplit=True
if( partitioner.treeType != TREE_D )
{
tempCS->treeType = TREE_L;
}
else
{
if( chromaNotSplit )
{
CHECK( partitioner.chType != CHANNEL_TYPE_LUMA, "chType must be luma" );
tempCS->treeType = partitioner.treeType = TREE_L;
}
else
{
// 只有当色度要划分的时候,tempCS.treeType才是dual tree
tempCS->treeType = partitioner.treeType = TREE_D;
}
}
partitioner.splitCurrArea( split, *tempCS ); // 根据划分模式确定划分区域, refer to https://blog.csdn.net/dfhg54/article/details/124828138
// QG(Quantization group): 把一帧图像划分为固定大小的正方形像素块,大小由PPS指定,且必须处于CTU和最小CU之间,
// 同一个QG内的所有非零系数的CU共享一个QP; HEVC中使用相邻QG的信息预测当前QG内的QP, predQP = (QP_A + Qp_B + 1) >> 1
bool qgEnableChildren = partitioner.currQgEnable(); // QG possible at children level
bool qgChromaEnableChildren = partitioner.currQgChromaEnable(); // Chroma QG possible at children level
m_CurrCtx++;
// 将重建像素和预测像素都置零
tempCS->getRecoBuf().fill( 0 );
tempCS->getPredBuf().fill(0);
AffineMVInfo tmpMVInfo;
bool isAffMVInfoSaved;
#if GDR_ENABLED
AffineMVInfoSolid tmpMVInfoSolid;
m_pcInterSearch->savePrevAffMVInfo(0, tmpMVInfo, tmpMVInfoSolid, isAffMVInfoSaved);
#else
m_pcInterSearch->savePrevAffMVInfo(0, tmpMVInfo, isAffMVInfoSaved);
#endif
BlkUniMvInfo tmpUniMvInfo;
bool isUniMvInfoSaved = false;
if (!tempCS->slice->isIntra())
{
m_pcInterSearch->savePrevUniMvInfo(tempCS->area.Y(), tmpUniMvInfo, isUniMvInfoSaved);
}
do
{
const auto &subCUArea = partitioner.currArea(); // 将测试的子区域的YCbCr分量的位置和宽高赋给subCUArea;
// auto作为C/C++存储类型之一,自动存储期,即当退出程序块的时候自动销毁;
// auto可以自动推断数据类型(编译期),可以代替复杂冗长的类型声明
// auto类型不能被声明为返回值、形参 和 模板参数
if( tempCS->picture->Y().contains( subCUArea.lumaPos() ) )
{
const unsigned wIdx = gp_sizeIdxInfo->idxFrom( subCUArea.lwidth () ); // 返回宽高的对数作为索引值,例如宽=64,wIdx=6
const unsigned hIdx = gp_sizeIdxInfo->idxFrom( subCUArea.lheight() );
CodingStructure *tempSubCS = m_pTempCS[wIdx][hIdx]; // 从已划分CU的wIdx和hIdx推出新的tempCs
CodingStructure *bestSubCS = m_pBestCS[wIdx][hIdx];
tempCS->initSubStructure( *tempSubCS, partitioner.chType, subCUArea, false ); // 初始化子CU的节点,将CTU级别的信息传输给子CU节点, refer to https://blog.csdn.net/dfhg54/article/details/124304502
tempCS->initSubStructure( *bestSubCS, partitioner.chType, subCUArea, false );
tempSubCS->bestParent = bestSubCS->bestParent = bestCS;
double newMaxCostAllowed = isLuma(partitioner.chType) ? std::min(encTestMode.maxCostAllowed, bestCS->cost - m_pcRdCost->calcRdCost(tempCS->fracBits, tempCS->dist)) : MAX_DOUBLE;
newMaxCostAllowed = std::max(0.0, newMaxCostAllowed);
xCompressCU(tempSubCS, bestSubCS, partitioner, newMaxCostAllowed); // 递归调用xCompressCU
tempSubCS->bestParent = bestSubCS->bestParent = nullptr;
// 子CU的cost是正无穷(?),结束划分
if( bestSubCS->cost == MAX_DOUBLE )
{
CHECK( split == CU_QUAD_SPLIT, "Split decision reusing cannot skip quad split" );
tempCS->cost = MAX_DOUBLE;
tempCS->costDbOffset = 0;
tempCS->useDbCost = m_pcEncCfg->getUseEncDbOpt();
m_CurrCtx--;
partitioner.exitCurrSplit();
xCheckBestMode( tempCS, bestCS, partitioner, encTestMode ); // 检查当前模式是否为最佳模式,若为最佳模式则与 bestCS 交换
if( partitioner.chType == CHANNEL_TYPE_LUMA )
{
tempCS->motionLut = oldMotionLut;
}
return;
}
bool keepResi = KEEP_PRED_AND_RESI_SIGNALS; // 是否保存残差信号
tempCS->useSubStructure( *bestSubCS, partitioner.chType, CS::getArea( *tempCS, subCUArea, partitioner.chType ),
KEEP_PRED_AND_RESI_SIGNALS, true, keepResi, keepResi, true ); // 将子CU的最优模式copy到tempCS中
if( partitioner.currQgEnable() )
{
tempCS->prevQP[partitioner.chType] = bestSubCS->prevQP[partitioner.chType]; // 如果当前QG可用,使用子CU prevQP 更新当前 tempCS 的prevQP
}
// 循环遍历所有子CU,check是否有不相容的模式
if( partitioner.isConsInter() )
{
for( int i = 0; i < bestSubCS->cus.size(); i++ )
{
CHECK(!CU::isInter(*bestSubCS->cus[i]), "all CUs must be inter mode in an Inter coding region (SCIPU)");
}
}
else if( partitioner.isConsIntra() )
{
for( int i = 0; i < bestSubCS->cus.size(); i++ )
{
CHECK(CU::isInter(*bestSubCS->cus[i]), "all CUs must not be inter mode in an Intra coding region (SCIPU)");
}
}
tempSubCS->releaseIntermediateData();
bestSubCS->releaseIntermediateData();
// 如果当前不在I Slice,而且限制只能test帧内
if( !tempCS->slice->isIntra() && partitioner.isConsIntra() )
{
tempCS->cost = m_pcRdCost->calcRdCost( tempCS->fracBits, tempCS->dist );
// 如果计算到目前的tempCS的cost已经大于bestCS的cost,则提前终止块划分的尝试
if( tempCS->cost > bestCS->cost )
{
tempCS->cost = MAX_DOUBLE;
tempCS->costDbOffset = 0;
tempCS->useDbCost = m_pcEncCfg->getUseEncDbOpt();
m_CurrCtx--;
partitioner.exitCurrSplit();
if( partitioner.chType == CHANNEL_TYPE_LUMA )
{
tempCS->motionLut = oldMotionLut;
}
return;
}
}
}
} while( partitioner.nextPart( *tempCS ) ); // 尝试所有的划分子CU
partitioner.exitCurrSplit();
m_CurrCtx--;
if( chromaNotSplit )
{
// 这部分代码需要refer to https://blog.csdn.net/dfhg54/article/details/124291272
//Note: In local dual tree region, the chroma CU refers to the central luma CU's QP.
//If the luma CU QP shall be predQP (no residual in it and before it in the QG), it must be revised to predQP before encoding the chroma CU
//Otherwise, the chroma CU uses predQP+deltaQP in encoding but is decoded as using predQP, thus causing encoder-decoded mismatch on chroma qp.
if( tempCS->pps->getUseDQP() )
{
//find parent CS that including all coded CUs in the QG before this node
CodingStructure* qgCS = tempCS;
bool deltaQpCodedBeforeThisNode = false;
if( partitioner.currArea().lumaPos() != partitioner.currQgPos )
{
int numParentNodeToQgCS = 0;
while( qgCS->area.lumaPos() != partitioner.currQgPos )
{
CHECK( qgCS->parent == nullptr, "parent of qgCS shall exsit" );
qgCS = qgCS->parent;
numParentNodeToQgCS++;
}
//check whether deltaQP has been coded (in luma CU or luma&chroma CU) before this node
CodingStructure* parentCS = tempCS->parent;
// 逐层遍历当前父节点的所有CU,检查deltaQP在当前节点之前是否已经编码
for( int i = 0; i < numParentNodeToQgCS; i++ )
{
//checking each parent
CHECK( parentCS == nullptr, "parentCS shall exsit" );
for( const auto &cu : parentCS->cus )
{
if( cu->rootCbf && !isChroma( cu->chType ) )
{
deltaQpCodedBeforeThisNode = true;
break;
}
}
parentCS = parentCS->parent;
}
}
//revise luma CU qp before the first luma CU with residual in the SCIPU to predQP
if( !deltaQpCodedBeforeThisNode )
{
//get pred QP of the QG
const CodingUnit* cuFirst = qgCS->getCU( CHANNEL_TYPE_LUMA );
CHECK( cuFirst->lumaPos() != partitioner.currQgPos, "First cu of the Qg is wrong" );
int predQp = CU::predictQP( *cuFirst, qgCS->prevQP[CHANNEL_TYPE_LUMA] );
//revise to predQP
int firstCuHasResidual = (int)tempCS->cus.size();
for( int i = 0; i < tempCS->cus.size(); i++ )
{
if( tempCS->cus[i]->rootCbf )
{
firstCuHasResidual = i;
break;
}
}
for( int i = 0; i < firstCuHasResidual; i++ )
{
tempCS->cus[i]->qp = predQp;
}
}
}
assert( tempCS->treeType == TREE_L );
uint32_t numCuPuTu[6];
tempCS->picture->cs->getNumCuPuTuOffset( numCuPuTu );
tempCS->picture->cs->useSubStructure( *tempCS, partitioner.chType, CS::getArea( *tempCS, partitioner.currArea(), partitioner.chType ), false, true, false, false, false );
if (isChromaEnabled(tempCS->pcv->chrFormat))
{
partitioner.chType = CHANNEL_TYPE_CHROMA;
tempCS->treeType = partitioner.treeType = TREE_C;
m_CurrCtx++;
const unsigned wIdx = gp_sizeIdxInfo->idxFrom(partitioner.currArea().lwidth());
const unsigned hIdx = gp_sizeIdxInfo->idxFrom(partitioner.currArea().lheight());
CodingStructure *tempCSChroma = m_pTempCS2[wIdx][hIdx];
CodingStructure *bestCSChroma = m_pBestCS2[wIdx][hIdx];
tempCS->initSubStructure(*tempCSChroma, partitioner.chType, partitioner.currArea(), false);
tempCS->initSubStructure(*bestCSChroma, partitioner.chType, partitioner.currArea(), false);
tempCS->treeType = TREE_D;
xCompressCU(tempCSChroma, bestCSChroma, partitioner);
// attach chromaCS to luma CS and update cost
bool keepResi = KEEP_PRED_AND_RESI_SIGNALS;
// bestCSChroma->treeType = tempCSChroma->treeType = TREE_C;
CHECK(bestCSChroma->treeType != TREE_C || tempCSChroma->treeType != TREE_C, "wrong treeType for chroma CS");
tempCS->useSubStructure(*bestCSChroma, partitioner.chType,
CS::getArea(*bestCSChroma, partitioner.currArea(), partitioner.chType),
KEEP_PRED_AND_RESI_SIGNALS, true, keepResi, true, true);
// release tmp resource
tempCSChroma->releaseIntermediateData();
bestCSChroma->releaseIntermediateData();
// tempCS->picture->cs->releaseIntermediateData();
m_CurrCtx--;
}
tempCS->picture->cs->clearCuPuTuIdxMap( partitioner.currArea(), numCuPuTu[0], numCuPuTu[1], numCuPuTu[2], numCuPuTu + 3 );
//recover luma tree status
partitioner.chType = CHANNEL_TYPE_LUMA;
partitioner.treeType = TREE_D;
partitioner.modeType = MODE_TYPE_ALL;
}
else
{
if (!qgChromaEnableChildren) // check at deepest cQG level only
{
xCheckChromaQPOffset( *tempCS, partitioner );
}
}
// Finally, generate split-signaling bits for RD-cost check
const PartSplit implicitSplit = partitioner.getImplicitSplit( *tempCS );
{
bool enforceQT = implicitSplit == CU_QUAD_SPLIT;
// LARGE CTU bug
if( m_pcEncCfg->getUseFastLCTU() )
{
unsigned minDepth = 0;
unsigned maxDepth = floorLog2(tempCS->sps->getCTUSize()) - floorLog2(tempCS->sps->getMinQTSize(slice.getSliceType(), partitioner.chType));
if( auto ad = dynamic_cast( &partitioner ) )
{
ad->setMaxMinDepth( minDepth, maxDepth, *tempCS );
}
if( minDepth > partitioner.currQtDepth )
{
// enforce QT
enforceQT = true;
}
}
if( !enforceQT )
{
m_CABACEstimator->resetBits();
m_CABACEstimator->split_cu_mode( split, *tempCS, partitioner );
partitioner.modeType = modeTypeParent;
m_CABACEstimator->mode_constraint( split, *tempCS, partitioner, modeTypeChild );
tempCS->fracBits += m_CABACEstimator->getEstFracBits(); // split bits
}
}
tempCS->cost = m_pcRdCost->calcRdCost( tempCS->fracBits, tempCS->dist ); // 增加划分标志的影响
// Check Delta QP bits for splitted structure
if( !qgEnableChildren ) // check at deepest QG level only
{
xCheckDQP(*tempCS, partitioner, true);
}
// If the configuration being tested exceeds the maximum number of bytes for a slice / slice-segment, then
// a proper RD evaluation cannot be performed. Therefore, termination of the
// slice/slice-segment must be made prior to this CTU.
// This can be achieved by forcing the decision to be that of the rpcTempCU.
// The exception is each slice / slice-segment must have at least one CTU.
if (bestCS->cost != MAX_DOUBLE)
{
}
else
{
bestCS->costDbOffset = 0;
}
tempCS->useDbCost = m_pcEncCfg->getUseEncDbOpt();
if( tempCS->cus.size() > 0 && modeTypeParent == MODE_TYPE_ALL && modeTypeChild == MODE_TYPE_INTER )
{
int areaSizeNoResiCu = 0;
for( int k = 0; k < tempCS->cus.size(); k++ )
{
areaSizeNoResiCu += (tempCS->cus[k]->rootCbf == false) ? tempCS->cus[k]->lumaSize().area() : 0;
}
if( areaSizeNoResiCu >= (tempCS->area.lumaSize().area() >> 1) )
{
skipInterPass = true;
}
}
splitRdCostBest[getPartSplit(encTestMode)] = tempCS->cost;
// RD check for sub partitioned coding structure.
xCheckBestMode( tempCS, bestCS, partitioner, encTestMode ); // 比较tempCS和bestCS
#if GDR_ENABLED
if (isAffMVInfoSaved)
{
m_pcInterSearch->addAffMVInfo(tmpMVInfo, tmpMVInfoSolid);
}
#else
if (isAffMVInfoSaved)
{
m_pcInterSearch->addAffMVInfo(tmpMVInfo);
}
#endif
if (!tempCS->slice->isIntra() && isUniMvInfoSaved)
{
m_pcInterSearch->addUniMvInfo(tmpUniMvInfo);
}
tempCS->motionLut = oldMotionLut;
tempCS->prevPLT = oldPLT;
tempCS->releaseIntermediateData();
tempCS->prevQP[partitioner.chType] = oldPrevQp;
}