- dp背包问题
|CXHAO|
c++
有NN件物品和一个容量是VV的背包。每件物品只能使用一次。第ii件物品的体积是vivi,价值是wiwi。求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。输出最大价值。输入格式第一行两个整数,N,VN,V,用空格隔开,分别表示物品数量和背包容积。接下来有NN行,每行两个整数vi,wivi,wi,用空格隔开,分别表示第ii件物品的体积和价值。输出格式输出一个整数,表示最大价值
- 贪心算法在背包问题上的运用(Python)
MATLAB卡尔曼
智能算法的MATLAB实现贪心算法python算法
背包问题有n个物品,它们有各自的体积和价值,现有给定容量的背包,如何让背包里装入的物品具有最大的价值总和?这就是典型的背包问题(又称为0-1背包问题),也是具体的、没有经过任何延伸的背包问题模型。背包问题的传统求解方法较为复杂,现定义有一个可以载重为8kg的背包,另外还有4个物品,物品的价值和质量数据如下表,不考虑背包的容量。4个物品的总质量大于8kg,所以要想在有限载重的背包携带更多质量的物品,
- 代码随想录 Day 42 | 【第九章 动态规划 part 05】完全背包、518. 零钱兑换 II、377. 组合总和 Ⅳ、70. 爬楼梯 (进阶)
Accept17
动态规划算法
一、完全背包完全背包视频讲解:带你学透完全背包问题!和01背包有什么差别?遍历顺序上有什么讲究?_哔哩哔哩_bilibilihttps://programmercarl.com/%E8%83%8C%E5%8C%85%E9%97%AE%E9%A2%98%E7%90%86%E8%AE%BA%E5%9F%BA%E7%A1%80%E5%AE%8C%E5%85%A8%E8%83%8C%E5%8C%85.ht
- 面试基础---面试刷题推荐 动态规划算法:背包问题与最长公共子序列
WeiLai1112
leetcode刷题算法面试动态规划java分布式
动态规划算法:背包问题与最长公共子序列引言:动态规划的核心思想动态规划(DynamicProgramming,DP)是一种解决复杂问题的算法思想,通过将问题分解为子问题,并保存子问题的解,避免重复计算,从而提高效率。本文将详细讲解动态规划在背包问题和最长公共子序列中的应用,并提供易于记忆的代码模板。一、背包问题1.1问题描述给定n个物品,每个物品有一个重量w[i]和一个价值v[i]。现在有一个容量
- 笔记:代码随想录算法训练营第35天: 01背包问题 二维、 01背包问题 一维 、LeetCode416. 分割等和子集
jingjingjing1111
算法leetcode数据结构动态规划笔记
学习资料:代码随想录这一块儿学得挺痛苦注:文中含大模型生成内容动态规划:01背包理论基础卡码网第46题思路:五部曲定义:dp[i][j]为第i个物品背包容量为j,能装下的最大价值递推公式:dp[i][j]的值等于dp[i-1][j]的值和dp[i-1][j-weight[i]]+value相比的最大值,后者为看放下当前物品+减去当前物品的容量能放下什么价值,当然,要是放不下当前物品,就算了,保持原
- 回溯法-子集树递归树-装载问题
王安安的记录
算法回溯法c++算法
回溯法深度优先策略(回忆深度优先遍历二叉树思路)解题步骤:1)针对所给问题,定义问题的解空间;例如,n个物品的0-1背包问题所对应的解空间树是一棵子集树。2)确定易于搜索的解空间结构;3)以深度优先方式搜索解空间,并在搜索过程中用剪枝函数(****约束函数除去不满足约束的子树,限界函数减去得不到最优解的子树**)**避免无效搜索##子集树和递归树扩展结点:一个正在产生儿子的结点称为扩展结点。活结点
- 01背包问题简介
天狼星——白羽
python
01背包问题是动态规划算法中非常经典的一个问题,广泛应用于优化选择场景。它描述的是:给定一组物品(每个物品有重量和价值),以及一个最大承重能力的背包,在不超过背包容积的前提下,如何挑选这些物品使得装入背包中的总价值最高。基本要素n件物品每一件都有两个属性:weight[i]表示第i物品的重量;value[i]表示该物品的价值。背包的最大承载量为W;目标是在满足重量限制的情况下获得最大的总价值Vma
- Leetcode 刷题笔记1 动态规划part04
平乐君
leetcode笔记动态规划
leetcode最后一块石头的重量||问题转化,把石头问题转化为背包问题,在target容量范围内所能装的最大石头重量classSolution:deflastStoneWeightII(self,stones:List[int])->int:total=sum(stones)target=total//2dp=[0]*(target+1)forstoneinstones:forjinrange(
- 算法分析-贪心算法
old-handsome
算法贪心算法算法
文章目录前言一、定义二、特点三、使用场景适用场景:何时使用部分背包问题活动安排问题最优装载问题最小生成树Prim算法:按点检索,适用于稠密图Kruskal算法:并查集+最小生成树Dijkstra算法:不能存在负权边,松弛操作总结前言本博客仅做学习笔记,如有侵权,联系后即刻更改科普:贪心算法一、定义贪心算法是指在对问题进行求解时,在每一步选择中都采取最好或者最优(最有利)的选择,从而希望最终结果是最
- 蓝桥杯算法基础(36)动态规划dp经典问题详解
湖前一人对影成双
算法蓝桥杯动态规划
动态规划-动态规划方法方法代表了这一类问题(最优子结构or子问题最优性)的有一半解法,是设计方法或者策略,不是具体算法-本质是递推,核心是找到状态转移的方式,写出dp方程-形式:记忆性递归递推01背包问题有n个重量和价值分别为wi,vi的物品,从这些物品中挑选出总重量不超过n的物品,求所有挑选方案中的值总和的最大值1=w[i]){intv1=v[i]+dfs(i+1,ww-w[i]);//选择当前
- 华为OD机试 - 核酸最快检测效率 - 动态规划、背包问题(Python/JS/C/C++ 2024 E卷 200分)
哪 吒
华为odpythonjavascript
华为OD机试2024E卷题库疯狂收录中,刷题点这里专栏导读本专栏收录于《华为OD机试真题(Python/JS/C/C++)》。刷的越多,抽中的概率越大,私信哪吒,备注华为OD,加入华为OD刷题交流群,每一题都有详细的答题思路、详细的代码注释、3个测试用例、为什么这道题采用XX算法、XX算法的适用场景,发现新题目,随时更新,全天CSDN在线答疑。一、题目描述在系统、网络均正常的情况下组织核酸采样员和
- 【动态规划】 解决背包问题 Python
Alexlllly
Python实现算法python算法动态规划leetcode
【动态规划】解决背包问题Python背包问题背包问题现在有3个物品篮球1kg1000元吉他3kg2000元单反4kg2500元有1个背包重4kg问怎么拿物品价值最大运用动态规划DP来解决此问题方法代码【源码】——思路来自麻省理工背包问题defbackpack(memory,item_weight,values,last_weight,index):'''memory:如果是已经计算过得分支则直接返
- 部分背包问题(贪心算法)
萧毅寒
贪心算法算法
一、概念与问题背景部分背包问题是一种经典的优化问题,其中给定一系列物品,每个物品有一定的重量和价值,目标是在一个固定容量的背包中装入物品,使得背包中物品的总价值最大。与0/1背包问题不同,部分背包问题允许将物品分割,即可以只选择物品的一部分装入背包。二、贪心策略介绍对于部分背包问题,贪心算法是一种有效的解决策略。贪心策略的基本思想是,在每一步选择中,都采取在当前状态下最好或最优(即最有利)的选择,
- 算法研究员技术图谱和学习路径
执于代码
开发者职业加速服务算法学习
一、基础阶段:构建算法与数学根基数据结构与基础算法数据结构:数组、链表、栈、队列、哈希表、树(二叉搜索树、堆、字典树)、图等。基础算法:排序(快速排序、堆排序)、查找(二分查找)、递归与分治、贪心算法、简单动态规划(背包问题)、字符串匹配(KMP、Rabin-Karp)、图遍历(BFS/DFS)等。实践方法:通过LeetCode等平台刷题(如“剑指Offer”系列),掌握算法原理与代码实现。数学基
- 详解动态规划之01背包问题及其空间压缩(图文并茂+例题讲解)
看繁星aa
动态规划算法
1.动态规划问题的本质记忆化地暴力搜索所有可能性来得到问题的解我们常常会遇到一些问题,需要我们在n次操作,且每次操作有k种选择时,求出最终需要的最小或最大代价。处理类似的问题,我们一般需要遍历所有的可能性(相当于走一遍所有的路径),然后找到我们所需要的解。很明显我们可以构成一棵“决策树”,假设n=2,k=3,那么:我们可以通过DFS或者BFS来遍历整棵树,从而搜寻到我们需要的结果。时间复杂度:O(
- leetcode刷题-动态规划06
emmmmXxxy
leetcode动态规划算法
代码随想录动态规划part06|322.零钱兑换、279.完全平方数、139.单词拆分322.零钱兑换279.完全平方数139.单词拆分关于多重背包,你该了解这些!背包问题总结篇!322.零钱兑换leetcode题目链接代码随想录文档讲解思路:完全背包整理:完全背包理论基础:装满这个背包可得的最大价值(遍历顺序可以颠倒)零钱兑换2:装满背包有多少种方法(每种方法不强调顺序,组合数)(先遍历物品再遍
- CSP-J/S复赛算法 动态规划初步
人才程序员
CSP-J算法动态规划深度优先c++noiCSP-J/S
文章目录前言动态规划动态规划常见形式动态规划求最值的几个例子1.**背包问题**2.**最短路径问题**3.**最小硬币找零问题**4.**最长递增子序列**总结最优子结构举个简单的例子其他例子条件DP的核心就是穷举具体解释递归的算法时间复杂度dp数组的迭代解法通俗易懂的解释比喻状态转移方程详解状态转移方程中的状态概念通俗易懂的解释:举个例子:状态总结:DP的无后效性通俗易懂的解释举个例子特点总结
- 一张表解释01背包问题
apcipot_rain
算法算法蓝桥杯c语言
背包问题的概述:已知背包容量为m,有一堆物品(n个),每个物品都有重量和价值,求解怎么放物品能让拿到的东西价值达到最大。一道测试用例:104310411512613dp数组可视化:操作n\m12345678910输入3101001010101010101010输入4102001011111121212121输入5123001011121221222222输入61340010111213212223
- Java 算法和数据结构 答案整理,最新面试题
扫地僧009
互联网大厂面试题java算法数据结构
Java中如何使用动态规划求解背包问题?1、定义子问题:首先确定动态规划状态,通常以物品数量和背包容量为变量定义子问题,例如dp[i][j]表示前i件物品放入容量为j的背包所能获得的最大价值。2、确定状态转移方程:基于是否选择当前物品,将问题分为两个子问题,即dp[i][j]=max(dp[i-1][j],dp[i-1][j-weight[i]]+value[i]),表示选择当前物品和不选择当前物
- 背包问题-动态规划算法(附带Python代码解析)
心碎小猫p
算法动态规划python
一.背包问题概述:给定n种物品和一个容量为capacity的背包,其中每一个物品的重量和价值已知。问:应该如何选择装入背包的物品,使得装入背包中的物品的总价值最大?二.分析过程:1.思路:对于每一个物品只有两种选择,第一种情况:装入当前物品;第二种情况:不装入当前物品。我们从第一个物品开始,将其重量和背包容量进行比较,如果比背包容量小,则选择将这个物品装入背包,记录它的价值(如果比背包容量大,忽略
- 贪心算法.
pianmian1
贪心算法算法
贪心算法是指只从当前角度出发,做出当前情景下最好的选择,在某种意义上来说是局部最优解,并不从全局的角度做决策.如果贪心策略选择不恰当,可能无法得到全局最优解.贪心算法的基本流程如下:1.分析问题,确定优化目标,对变量进行初始化2.制定贪心策略:在制定贪心策略时需要证明所选贪心策略一定可以得到全局最优解,若找到反例则推翻当前贪心策略,重新确定贪心策略.完全背包问题本节以完全背包问题为例,说明贪心算法
- 动态规划之背包问题--python版本
我是小码搬运工
#python基础动态规划背包问题python版本
动态规划之背包问题–python版本问题已知一个最大量的背包,给定一组给定固定价值和固定体积的物品,求在不超过最大值的前提下,能放入背包中的最大总价值。解题思路该问题是典型的动态规划问题,分为三种不同的类型(0-1背包问题、完全背包和多重背包问题)解题关键–状态转移表达式:B(k,C)=max(B(k−1,C),B(k−1,C−ci)+vi)B(k,C)=max(B(k-1,C),B(k-1,C-
- 动态规划之背包问题全解
学会了,不,学废了
动态规划
概述———动态规划提出人:理查德·贝尔曼本质:一张表格处理方法内容:把原问题分解为若干子问题,自底向上先求解最小子问题,把结果储存在表格中,求解大的子问题时直接从表格中查询小的子问题的解,以避免重复计算,从而提高效率。一、动态规划求解原理适用范围:问题需要具备3个性质———最优子结构、子问题重叠、无后效性。最优子结构指问题最优解包含其子问题的最优解,是使用动态规划的基本条件。三要素:状态、阶段、决
- 动态规划之背包问题的Python实现
名侦探debug
Python数据结构python数据结构动态规划求解
目录1.问题描述2.动态规划之网格法3.python实现1.问题描述题目来源于《算法图解》第9章练习题9.2,如下图所示。对于背包问题,通常的做法有列举法、贪婪算法和动态规划(1)列举法:列举出所有的可能情况,再选择最优解,但当情况很多时,这种算法复杂度很高(2)贪婪算法:在容量允许范围内,每次都拿剩余物品中价值最高的,贪婪算法能够快速解决复杂度很高的问题,但通常得到的是次优解,但就对这个题目而言
- 动态规划之背包问题
于冬恋
动态规划算法
动态规划是一个重要的算法范式,它将一个问题分解为一系列更小的子问题,并通过存储子问题的解来避免重复计算,从而大幅提升时间效率。目录01背包问题完全背包问题多重背包问题二维费用背包问题(1)01背包问题给定n个物体,和一个容量为c的背包,物品i的重量为wi,其价值为应该如何选择装入背包的物品使其获得的总价值最大。可以用贪心算法,但是不一定能达到最优解,所以用动态规划解决创建一个数组dp[i][j]i
- 刷题计划day29 动规01背包(一)【01背包】【分割等和子集】【最后一块石头的重量 II】
哈哈哈的懒羊羊
算法java数据结构leetcode动态规划背包问题蓝桥杯
⚡刷题计划day29动规01背包(一)开始,可以点个免费的赞哦~往期可看专栏,关注不迷路,您的支持是我的最大动力~目录背包问题前言01背包二维数组dp[i][j]关于是否放物品:关于二维dp遍历顺序:一维数组dp(滚动数组)关于一维dp遍历顺序:题目一:416.分割等和子集题目二:1049.最后一块石头的重量II背包问题前言对于面试的话,其实掌握01背包和完全背包,就够用了,最多可以再来一个多重背
- AcWing中01背包问题
ONEPEICE-ing
算法AcWing
在acwing.com中的题,本次为01背包问题【具体视频可通过www.acwing.com/video/214网站观看(ps:是跟着视频中的老师一起写的,并不是原创~~~)】01背包问题题目:有N件物品和一个容量是V的背包。每件物品只能使用一次。第i间物品的体积是vi,价值是wi,求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大,输出最大价值。输入格式:第一行两个整数,N
- 背包总结——0-1背包及完全背包问题总结及代码模板
Baymax的学习日志
c++动态规划算法c++
背包总结背包问题通常是多种物品有多个属性,且已知条件为某属性被受限,求另一属性的最大/最小/等于/存在不存在。以0-1背包为例解释:n个物品具有的属性为重量和价值,其中总重量C将重量的属性限制住,求最大价值,即求另一属性的特征。针对背包问题:1、先判断属于0-1背包还是完全背包。2、看是求最大值/最小值/等值/是否存在/排列/组合(排列/组合问题通常出现在完全背包中)。确定了背包类型及要求的问题后
- 动态规划——完全背包问题(力扣322: 零钱兑换)
索利亚噶通
动态规划算法
前言这次我们要说的是完全背包问题,还记得下面这张图吗,可以看到01背包问题和完全背包问题的区别在于每种物品的数量01背包问题中每种物品只有一个,只有选与不选两种情况完全背包问题种每种物品有多个,选不选,选多少都是考虑的问题定义:一个背包容积为C,一共N种物品,分别编号0,1,2....i,i+1,.....N-1,第i个物品的重量为weight[i],价值为value[i],每种物品可以选用任意多
- 【进击的算法】动态规划——不同维度的背包问题
蓝色学者i
算法动态规划数据结构
文章目录前言动态规划的维度二维动规leetcode416、分割等和子集leetcode1049.最后一块石头的重量IIleetcode494、目标和三维动规leetcode474.一和零结语前言大家好久不见,这次我们一起来学习一下动态规划中怎么确定维度,和对应问题如何解决。动态规划的维度一个维度:只有物品两个维度:物品和容量三个维度:物品和容量1和容量2之前讲解动态规划问题时,斐波那契数列就是一个
- 戴尔笔记本win8系统改装win7系统
sophia天雪
win7戴尔改装系统win8
戴尔win8 系统改装win7 系统详述
第一步:使用U盘制作虚拟光驱:
1)下载安装UltraISO:注册码可以在网上搜索。
2)启动UltraISO,点击“文件”—》“打开”按钮,打开已经准备好的ISO镜像文
- BeanUtils.copyProperties使用笔记
bylijinnan
java
BeanUtils.copyProperties VS PropertyUtils.copyProperties
两者最大的区别是:
BeanUtils.copyProperties会进行类型转换,而PropertyUtils.copyProperties不会。
既然进行了类型转换,那BeanUtils.copyProperties的速度比不上PropertyUtils.copyProp
- MyEclipse中文乱码问题
0624chenhong
MyEclipse
一、设置新建常见文件的默认编码格式,也就是文件保存的格式。
在不对MyEclipse进行设置的时候,默认保存文件的编码,一般跟简体中文操作系统(如windows2000,windowsXP)的编码一致,即GBK。
在简体中文系统下,ANSI 编码代表 GBK编码;在日文操作系统下,ANSI 编码代表 JIS 编码。
Window-->Preferences-->General -
- 发送邮件
不懂事的小屁孩
send email
import org.apache.commons.mail.EmailAttachment;
import org.apache.commons.mail.EmailException;
import org.apache.commons.mail.HtmlEmail;
import org.apache.commons.mail.MultiPartEmail;
- 动画合集
换个号韩国红果果
htmlcss
动画 指一种样式变为另一种样式 keyframes应当始终定义0 100 过程
1 transition 制作鼠标滑过图片时的放大效果
css
.wrap{
width: 340px;height: 340px;
position: absolute;
top: 30%;
left: 20%;
overflow: hidden;
bor
- 网络最常见的攻击方式竟然是SQL注入
蓝儿唯美
sql注入
NTT研究表明,尽管SQL注入(SQLi)型攻击记录详尽且为人熟知,但目前网络应用程序仍然是SQLi攻击的重灾区。
信息安全和风险管理公司NTTCom Security发布的《2015全球智能威胁风险报告》表明,目前黑客攻击网络应用程序方式中最流行的,要数SQLi攻击。报告对去年发生的60亿攻击 行为进行分析,指出SQLi攻击是最常见的网络应用程序攻击方式。全球网络应用程序攻击中,SQLi攻击占
- java笔记2
a-john
java
类的封装:
1,java中,对象就是一个封装体。封装是把对象的属性和服务结合成一个独立的的单位。并尽可能隐藏对象的内部细节(尤其是私有数据)
2,目的:使对象以外的部分不能随意存取对象的内部数据(如属性),从而使软件错误能够局部化,减少差错和排错的难度。
3,简单来说,“隐藏属性、方法或实现细节的过程”称为——封装。
4,封装的特性:
4.1设置
- [Andengine]Error:can't creat bitmap form path “gfx/xxx.xxx”
aijuans
学习Android遇到的错误
最开始遇到这个错误是很早以前了,以前也没注意,只当是一个不理解的bug,因为所有的texture,textureregion都没有问题,但是就是提示错误。
昨天和美工要图片,本来是要背景透明的png格式,可是她却给了我一个jpg的。说明了之后她说没法改,因为没有png这个保存选项。
我就看了一下,和她要了psd的文件,还好我有一点
- 自己写的一个繁体到简体的转换程序
asialee
java转换繁体filter简体
今天调研一个任务,基于java的filter实现繁体到简体的转换,于是写了一个demo,给各位博友奉上,欢迎批评指正。
实现的思路是重载request的调取参数的几个方法,然后做下转换。
- android意图和意图监听器技术
百合不是茶
android显示意图隐式意图意图监听器
Intent是在activity之间传递数据;Intent的传递分为显示传递和隐式传递
显式意图:调用Intent.setComponent() 或 Intent.setClassName() 或 Intent.setClass()方法明确指定了组件名的Intent为显式意图,显式意图明确指定了Intent应该传递给哪个组件。
隐式意图;不指明调用的名称,根据设
- spring3中新增的@value注解
bijian1013
javaspring@Value
在spring 3.0中,可以通过使用@value,对一些如xxx.properties文件中的文件,进行键值对的注入,例子如下:
1.首先在applicationContext.xml中加入:
<beans xmlns="http://www.springframework.
- Jboss启用CXF日志
sunjing
logjbossCXF
1. 在standalone.xml配置文件中添加system-properties:
<system-properties> <property name="org.apache.cxf.logging.enabled" value=&
- 【Hadoop三】Centos7_x86_64部署Hadoop集群之编译Hadoop源代码
bit1129
centos
编译必需的软件
Firebugs3.0.0
Maven3.2.3
Ant
JDK1.7.0_67
protobuf-2.5.0
Hadoop 2.5.2源码包
Firebugs3.0.0
http://sourceforge.jp/projects/sfnet_findbug
- struts2验证框架的使用和扩展
白糖_
框架xmlbeanstruts正则表达式
struts2能够对前台提交的表单数据进行输入有效性校验,通常有两种方式:
1、在Action类中通过validatexx方法验证,这种方式很简单,在此不再赘述;
2、通过编写xx-validation.xml文件执行表单验证,当用户提交表单请求后,struts会优先执行xml文件,如果校验不通过是不会让请求访问指定action的。
本文介绍一下struts2通过xml文件进行校验的方法并说
- 记录-感悟
braveCS
感悟
再翻翻以前写的感悟,有时会发现自己很幼稚,也会让自己找回初心。
2015-1-11 1. 能在工作之余学习感兴趣的东西已经很幸福了;
2. 要改变自己,不能这样一直在原来区域,要突破安全区舒适区,才能提高自己,往好的方面发展;
3. 多反省多思考;要会用工具,而不是变成工具的奴隶;
4. 一天内集中一个定长时间段看最新资讯和偏流式博
- 编程之美-数组中最长递增子序列
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class LongestAccendingSubSequence {
/**
* 编程之美 数组中最长递增子序列
* 书上的解法容易理解
* 另一方法书上没有提到的是,可以将数组排序(由小到大)得到新的数组,
* 然后求排序后的数组与原数
- 读书笔记5
chengxuyuancsdn
重复提交struts2的token验证
1、重复提交
2、struts2的token验证
3、用response返回xml时的注意
1、重复提交
(1)应用场景
(1-1)点击提交按钮两次。
(1-2)使用浏览器后退按钮重复之前的操作,导致重复提交表单。
(1-3)刷新页面
(1-4)使用浏览器历史记录重复提交表单。
(1-5)浏览器重复的 HTTP 请求。
(2)解决方法
(2-1)禁掉提交按钮
(2-2)
- [时空与探索]全球联合进行第二次费城实验的可能性
comsci
二次世界大战前后,由爱因斯坦参加的一次在海军舰艇上进行的物理学实验 -费城实验
至今给我们大家留下很多迷团.....
关于费城实验的详细过程,大家可以在网络上搜索一下,我这里就不详细描述了
在这里,我的意思是,现在
- easy connect 之 ORA-12154: TNS: 无法解析指定的连接标识符
daizj
oracleORA-12154
用easy connect连接出现“tns无法解析指定的连接标示符”的错误,如下:
C:\Users\Administrator>sqlplus username/
[email protected]:1521/orcl
SQL*Plus: Release 10.2.0.1.0 – Production on 星期一 5月 21 18:16:20 2012
Copyright (c) 198
- 简单排序:归并排序
dieslrae
归并排序
public void mergeSort(int[] array){
int temp = array.length/2;
if(temp == 0){
return;
}
int[] a = new int[temp];
int
- C语言中字符串的\0和空格
dcj3sjt126com
c
\0 为字符串结束符,比如说:
abcd (空格)cdefg;
存入数组时,空格作为一个字符占有一个字节的空间,我们
- 解决Composer国内速度慢的办法
dcj3sjt126com
Composer
用法:
有两种方式启用本镜像服务:
1 将以下配置信息添加到 Composer 的配置文件 config.json 中(系统全局配置)。见“例1”
2 将以下配置信息添加到你的项目的 composer.json 文件中(针对单个项目配置)。见“例2”
为了避免安装包的时候都要执行两次查询,切记要添加禁用 packagist 的设置,如下 1 2 3 4 5
- 高效可伸缩的结果缓存
shuizhaosi888
高效可伸缩的结果缓存
/**
* 要执行的算法,返回结果v
*/
public interface Computable<A, V> {
public V comput(final A arg);
}
/**
* 用于缓存数据
*/
public class Memoizer<A, V> implements Computable<A,
- 三点定位的算法
haoningabc
c算法
三点定位,
已知a,b,c三个顶点的x,y坐标
和三个点都z坐标的距离,la,lb,lc
求z点的坐标
原理就是围绕a,b,c 三个点画圆,三个圆焦点的部分就是所求
但是,由于三个点的距离可能不准,不一定会有结果,
所以是三个圆环的焦点,环的宽度开始为0,没有取到则加1
运行
gcc -lm test.c
test.c代码如下
#include "stdi
- epoll使用详解
jimmee
clinux服务端编程epoll
epoll - I/O event notification facility在linux的网络编程中,很长的时间都在使用select来做事件触发。在linux新的内核中,有了一种替换它的机制,就是epoll。相比于select,epoll最大的好处在于它不会随着监听fd数目的增长而降低效率。因为在内核中的select实现中,它是采用轮询来处理的,轮询的fd数目越多,自然耗时越多。并且,在linu
- Hibernate对Enum的映射的基本使用方法
linzx0212
enumHibernate
枚举
/**
* 性别枚举
*/
public enum Gender {
MALE(0), FEMALE(1), OTHER(2);
private Gender(int i) {
this.i = i;
}
private int i;
public int getI
- 第10章 高级事件(下)
onestopweb
事件
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- 孙子兵法
roadrunners
孙子兵法
始计第一
孙子曰:
兵者,国之大事,死生之地,存亡之道,不可不察也。
故经之以五事,校之以计,而索其情:一曰道,二曰天,三曰地,四曰将,五
曰法。道者,令民于上同意,可与之死,可与之生,而不危也;天者,阴阳、寒暑
、时制也;地者,远近、险易、广狭、死生也;将者,智、信、仁、勇、严也;法
者,曲制、官道、主用也。凡此五者,将莫不闻,知之者胜,不知之者不胜。故校
之以计,而索其情,曰
- MySQL双向复制
tomcat_oracle
mysql
本文包括:
主机配置
从机配置
建立主-从复制
建立双向复制
背景
按照以下简单的步骤:
参考一下:
在机器A配置主机(192.168.1.30)
在机器B配置从机(192.168.1.29)
我们可以使用下面的步骤来实现这一点
步骤1:机器A设置主机
在主机中打开配置文件 ,
- zoj 3822 Domination(dp)
阿尔萨斯
Mina
题目链接:zoj 3822 Domination
题目大意:给定一个N∗M的棋盘,每次任选一个位置放置一枚棋子,直到每行每列上都至少有一枚棋子,问放置棋子个数的期望。
解题思路:大白书上概率那一张有一道类似的题目,但是因为时间比较久了,还是稍微想了一下。dp[i][j][k]表示i行j列上均有至少一枚棋子,并且消耗k步的概率(k≤i∗j),因为放置在i+1~n上等价与放在i+1行上,同理