给定两个整数数组 preorder
和 inorder
,其中 preorder
是二叉树的先序遍历, inorder
是同一棵树的中序遍历,请构造二叉树并返回其根节点。
示例 1:
输入: preorder = [3,9,20,15,7], inorder = [9,3,15,20,7] 输出: [3,9,20,null,null,15,7]
示例 2:
输入: preorder = [-1], inorder = [-1] 输出: [-1]
提示:
1 <= preorder.length <= 3000
inorder.length == preorder.length
-3000 <= preorder[i], inorder[i] <= 3000
preorder
和 inorder
均 无重复 元素inorder
均出现在 preorder
preorder
保证 为二叉树的前序遍历序列inorder
保证 为二叉树的中序遍历序列/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
private Map indexMap;
public TreeNode buildTree(int[] preorder, int[] inorder) {
int n = preorder.length;
indexMap = new HashMap();
for (int i = 0; i < n; i++) {
indexMap.put(inorder[i], i);
}
return myBuildTree(preorder, inorder, 0, n - 1, 0, n - 1);
}
public TreeNode myBuildTree(int[] preorder, int[] inorder, int preorderLeft, int preorderRight, int inorderLeft, int inorderRight) {
if (preorderLeft > preorderRight) {
return null;
}
System.out.println("1");
// 前序遍历的第一个节点就是根结点
TreeNode root = new TreeNode(preorder[preorderLeft]);
// 左子树节点数
int leftSize = indexMap.get(preorder[preorderLeft]) - inorderLeft;
int rightSize = inorderRight - indexMap.get(preorder[preorderLeft]);
root.left = myBuildTree(preorder, inorder, preorderLeft + 1, preorderLeft + leftSize, inorderLeft, inorderLeft + leftSize - 1);
root.right = myBuildTree(preorder, inorder, preorderLeft + leftSize + 1, preorderRight, inorderLeft + leftSize + 1, inorderRight);
return root;
}
}
对于任意一颗树而言,前序遍历的形式总是:
[ 根节点, [左子树的前序遍历结果], [右子树的前序遍历结果] ]
即根节点总是前序遍历中的第一个节点。而中序遍历的形式总是:
[ [左子树的中序遍历结果], 根节点, [右子树的中序遍历结果] ]
只要我们在中序遍历中定位到根节点,那么我们就可以分别知道左子树和右子树中的节点数目。由于同一颗子树的前序遍历和中序遍历的长度显然是相同的,因此我们就可以对应到前序遍历的结果中,对上述形式中的所有左右括号进行定位。
这样以来,我们就知道了左子树的前序遍历和中序遍历结果,以及右子树的前序遍历和中序遍历结果,我们就可以递归地对构造出左子树和右子树,再将这两颗子树接到根节点的左右位置。