- 神经网络可视化工具
G鲲鹏展翅Y
神经网络人工智能深度学习
借鉴微信公众号:【超实用!】11款神经网络可视化工具,组会汇报、论文插图、科研学术必备01TensorSpace可以在网页上直接使用,是一种3D模型展示神经网络,适合给初学者或者科普的时候展示时使用,非常的直观,并且每一层的卷积层都可以展开,让你更加清晰的观察里面的内部结构地址:http://tensorspace.org02NN-SVG在它的主页上有三种神经网络,一种是FCNN,也就是全连接型的
- 算法|图论|BFS和DFS
锅巴xx
算法算法图论宽度优先c++笔记学习
图论|BFS和DFS1.BFS2.DFS心有猛虎,细嗅蔷薇。你好朋友,这里是锅巴的C\C++学习笔记,常言道,不积跬步无以至千里,希望有朝一日我们积累的滴水可以击穿顽石。BFSBFS广度优先搜索BFS(Breadth-First-Search),是一种遍历算法,也是很多重要的图的算法的原型(如:Dijstra单源最短路径算法和Prim最小生成树算法)。属于一种盲目搜寻法,目的是系统地展开并检查图中
- 编程小白冲Kaggle每日打卡(14)--kaggle学堂:<机器学习简介>你的第一个机器学习模型
AZmax01
编程小白冲Kaggle每日打卡机器学习人工智能
Kaggle官方课程链接:YourFirstMachineLearningModel本专栏旨在Kaggle官方课程的汉化,让大家更方便地看懂。YourFirstMachineLearningModel建立你的第一个模型。好哇!选择建模数据你的数据集有太多的变量,你无法理解,甚至无法很好地打印出来。你如何将如此庞大的数据量缩减到你能理解的程度?我们将从使用直觉选择几个变量开始。后续课程将向您展示自动
- 最短路径算法(算法篇)
Moon2144
数据结构与算法算法图论
算法之最短路径算法最短路径算法概念:考查最短路径问题,可能会输入一个赋权图(也就是边带有权的图),则一条路径的v1v2…vN的值就是对路径的边的权求和,这叫做赋权路径长,如果是无权路径长就是单纯的路径上的边数。在赋权图,可能会出现负值边的情况,这样当我们去找最短路径时,可能会产生负值圈,毕竟一直走负值边可以将数值变得更短。单源最短路径问题:给定一个赋权图G=(V,E)和一个特定顶点s作为输入,找出
- AI如何预测比赛结果:体育预测技术全解析
翱翔的猪脑花
人工智能
利用人工智能技术构建一个完整的体育预测系统,涵盖数据收集、模型构建到部署应用的完整流程。一、系统架构设计1.整体架构数据采集层数据处理层模型训练层预测服务层应用展示层2.技术选型Python3.8+TensorFlow/PyTorchScikit-learnPandas/NumpyFlask/FastAPI二、数据收集与处理1.数据源集成python复制importrequestsimportpa
- 【Day2 LeetCode】滑动窗口、矩阵模拟、前缀和
银河梦想家
leetcode算法
一、滑动窗口1、滑动窗口移动模板 对于滑动窗口算法,在解决一些子数组、子字符串问题比较常用,能够有效降低时间复杂度。该算法的关键是不断滑动,每次滑动都要维护好(更新)窗口内的状态,根据条件更新所需答案。下面给出常用的滑动窗口的伪代码模板,以字符串为例intleft=0,right=0;while(right&nums){intleft=0,right=0;//滑动窗口左、右端点ints=0,Len
- 图论 之 BFS
JNU freshman
算法蓝桥杯图论宽度优先算法蓝桥杯
文章目录3243.新增道路查询后的最短距离1311.获取你好友已观看的视频BFS:广度优先搜索(BFS)是一种常用的算法,通常用于解决图或树的遍历问题,尤其是寻找最短路径或层级遍历的场景。BFS的核心思想是使用队列(FIFO数据结构)来逐层遍历节点。模版fromcollectionsimportdeque#graphdefbfs(start):#初始化队列,并将起始节点加入队列queue=dequ
- 图论 之 弗洛伊德算法求解全源最短路径
JNU freshman
算法蓝桥杯图论算法
文章目录题目1334.阈值距离内邻居最少的城市Floyd算法适合用于求解多源的最短路径的问题,相比之下,Dijkstra算法适合用于求解单源的最短路径的问题,并且,当边的权值只有1的时候,我们还能使用BFS求解最短路径的问题图论之BFS图论之迪斯科特拉算法求解最短路径灵神讲解Floyd算法可以从递归中得到,相对应的,我们也有使用记忆化搜索和动态规划进行求解递归方式的模版@cachedefdfs(k
- Linux 在云计算中的应用有哪些?
我们的五年
游戏实现linux云计算运维
目录Linux在云计算中的应用1.云计算基础设施的核心2.虚拟化技术的基础3.容器化与微服务4.大数据与人工智能5.开源生态与社区支持6.在GoogleCloud上运行Linux的优势7.边缘计算与物联网总结Linux在云计算中的应用Linux作为开源操作系统的代表,在云计算领域扮演着至关重要的角色。其灵活性、稳定性和强大的社区支持使其成为云计算基础设施的理想选择。以下是Linux在云计算中的主要
- 问:区块链开发和智能合约开发这两个职位有什么区别,都是干什么的?
zqx_7
区块链智能合约
一、工作内容1.区块链后端开发网络层开发:负责构建和维护区块链节点之间的网络通信。确保节点能够高效、稳定地进行数据传输和同步。这涉及到选择合适的网络协议(如P2P协议),并实现节点的连接、断开和消息传递机制。优化网络性能,降低延迟和提高吞吐量,以满足大规模区块链应用的需求。例如,通过调整网络参数、使用缓存技术和优化数据传输算法等方式,提高网络的响应速度和数据处理能力。数据存储层开发:设计和实现区块
- deepseek给我出的面试题,你能写多少?
Xia0Mo
Java面试Java面经
以下是针对您的项目经历和技能整理的面试题目,分为技术深度、项目实践和综合设计三类:一、技术深度类Java基础如何理解JMM中的可见性、有序性和原子性?结合volatile和synchronized说明它们的实现原理。请解释ConcurrentHashMap在JDK7和JDK8中的线程安全实现差异,为什么JDK8改用CAS+synchronized?JVM垃圾回收算法中,标记-复制和标记-整理分别适
- Xline社区会议Call Up|在 CURP 算法中实现联合共识的安全性
社区社区建设
为了更全面地向大家介绍Xline的进展,同时促进Xline社区的发展,我们将于2024年5月31日北京时间11:00p.m.召开Xline社区会议。欢迎您届时登陆zoom观看直播:会议号:83210866737密码:411255会议链接:https://zoom.us/j/83210866737?pwd=smuaVvF6Jm7i322ZUHCHzAcRAFK164.1社区会议主题:在CURP算法中
- 在 GPU 上实现全规模文件系统加速
gpu加速器
摘要现代高性能计算和人工智能计算解决方案经常使用GPU作为其主要计算能力来源。这就为GPU应用程序的存储操作造成了严重的不平衡,因为每一个此类存储操作都必须向CPU发出信号并由CPU处理。在GPU4FS中,我们针对这种不平衡提出了一个彻底的解决方案:将文件系统的实现转移到应用程序中,并在GPU上运行完整的文件系统。这需要对从实际存储布局到文件系统接口的整个文件系统栈进行多次更改。此外,这种方法还能
- GB28181协议详解
江同学_
实时音视频c++
第一部分:协议基础与设备注册1.1协议分层架构层级协议/规范功能说明信令控制层SIP(RFC3261)+GB扩展设备注册、目录订阅、实时点播、云台控制等控制信令媒体传输层RTP/RTCP(RFC3550)+PS封装音视频数据封装传输,支持H.264/H.265/G.711/AAC等编码1.2设备注册流程(含鉴权算法)1.2.1完整信令交互[设备][SIP服务器]|----REGISTER(无鉴权)
- 微软Copilot官网入口- Copilot中文版国内使用入口
人工智能
微软Copilot:你的AI副驾驶,赋能未来工作与生活✨在数字化浪潮席卷全球的今天,效率和创造力已成为个人和企业成功的关键驱动力。微软Copilot应运而生,它不仅仅是一款软件,更像是一位人工智能副驾驶,旨在通过强大的AI技术,解放你的双手,激发你的灵感,助你驰骋于工作和生活的各个领域。核心功能:不止于智能,更在于赋能微软Copilot的核心在于其对自然语言处理(NLP)和机器学习(ML)的深度融
- Python+Spark地铁客流数据分析与预测系统 地铁大数据 地铁流量预测
qq_79856539
javaweb大数据pythonspark
本系统基于大数据设计并实现成都地铁客流量分析系统,使用网络爬虫爬取并收集成都地铁客流量数据,运用机器学习和时间序列分析等方法,对客流量数据进行预处理和特征选择,构建客流量预测模型,利用历史数据对模型进行训练和优化,实现客流量预测模型的部署和应用,通过系统界面展示预测结果。对预测模型进行评估和验证,并提出改进方案。设计步骤使用Python语言编写爬虫程序采集数据,并对原始数据集进行预处理;使用Pyt
- 第二个问题-阿西莫夫三定律的理解
释迦呼呼
AI一千问人工智能
阿西莫夫三定律是由科幻小说家艾萨克·阿西莫夫提出的机器人伦理准则,旨在确保机器人(或人工智能,AI)在与人类互动时,优先保护人类的安全和利益。这三个定律分别是:机器人不得伤害人类,或坐视人类受到伤害。机器人必须服从人类的命令,除非这些命令与第一定律相冲突。机器人必须保护自己,除非这种保护与前两个定律相冲突。以下从几个方面详细探讨如何理解这一定律:1.阿西莫夫三定律的本质:伦理框架而非技术规范阿西莫
- Django项目开发的网站展示来自fasta文件的蛋白质名称和序列的可视化表格
go5463158465
算法前端django数据库sqlite
1.项目初始化首先,确保你已经安装了Django。然后创建一个新的Django项目和应用:django-adminstartprojectprotein_projectcdprotein_projectpythonmanage.pystartappprotein_app在protein_project/settings.py中,将protein_app添加到INSTALLED_APPS列表中:IN
- 【机器学习与数据挖掘实战】案例14:基于随机森林分类器的汽车公司客户细分预测
Francek Chen
机器学习与数据挖掘实战机器学习数据挖掘随机森林人工智能分类算法
【作者主页】FrancekChen【专栏介绍】⌈⌈⌈机器学习与数据挖掘实战⌋⌋⌋机器学习是人工智能的一个分支,专注于让计算机系统通过数据学习和改进。它利用统计和计算方法,使模型能够从数据中自动提取特征并做出预测或决策。数据挖掘则是从大型数据集中发现模式、关联和异常的过程,旨在提取有价值的信息和知识。机器学习为数据挖掘提供了强大的分析工具,而数据挖掘则是机器学习应用的重要领域,两者相辅相成,共同推动
- 在LangFlow中集成OpenAI Compatible API类型的大语言模型
几道之旅
Dify:智能体(Agent)工作流知识库全搞定几道之旅AI专栏VVVIP语言模型人工智能自然语言处理
一、背景与核心价值从Dify换到这个langflow真的时各种的不适应啊。就比如这个OpenAICompatibleAPI,这不应该是基本操作嘛?算了,服了,习惯了就好了。咱闲言少叙,正片开始:LangFlow作为LangChain的可视化开发工具,其最大优势在于无需编写代码即可构建复杂的大模型应用。随着开源生态发展,越来越多的模型服务(如Ollama、硅基流动、DeepSeek、百度千帆等)开始
- 大语言模型:从开发到运行的深度解构
nbsaas-boot
语言模型人工智能自然语言处理
一、LLM开发训练的全流程解析1.数据工程的炼金术数据采集:构建涵盖网页文本(CommonCrawl)、书籍、论文、代码等领域的超大规模语料库,典型规模可达数十TB。例如GPT-4的训练数据包含超过13万亿token数据清洗:通过质量过滤(去除低质内容)、去重(MinHash算法)、毒性检测(NSFW内容识别)等步骤构建高质量数据集数据增强:引入代码数据提升逻辑性(如GitHub代码)、多语言数据
- 零代码构建AI Agent,解读华为云AI原生应用引擎的架构与实践
华为云开发者联盟
人工智能技术交流大模型人工智能华为云AI-native大模型
摘要:深入浅出地介绍华为云AI原生应用引擎,通过分钟级智能生成Agent应用的方式帮助企业完成从传统应用到智能应用的竞争力转型,使能千行万业智能应用创新。本文分享自华为云社区《DTT第71期直播回顾:零代码构建AIAgent——华为云AI原生应用引擎的架构与实践》,作者:华为云社区精选。基于大模型的生成式AI,将会引领我们走向AGI通用人工智能时代,经常有人说,在大模型和生成式AI时代,一切应用都
- 《深入理解JAVA虚拟机》第三章 垃圾收集器与内存分配策略
weixin_41262453
深入理解java虚拟机深入理解java虚拟机垃圾收集器与内存分配策略第三章
《深入理解java虚拟机笔记》第三章垃圾收集器与内存分配策略如何判断出对象已死?(对象已死是回收必要条件)引用计数算法可达性算法引用分强、软、弱、虚引用可达性分析算法中不可达的对象并非“非死不可”回收方法区垃圾收集算法标记-清除算法复制算法标记-整理算法实际使用的分代收集算法HotSpot算法实现HotSpot中的垃圾收集器Serial收集器(了解)SerialOld收集器(了解)ParNew收集
- 探秘 DeepSeek-V3:低成本训练铸就的 AI 大模型传奇
道亦无名
人工智能
在人工智能大模型的激烈竞争赛道上,DeepSeek-V3宛如一匹黑马,凭借其卓越的性能和令人惊叹的低训练成本,迅速吸引了全球AI领域的目光。今天,就让我们深入剖析DeepSeek-V3,探寻其背后的故事。DeepSeek-V3:横空出世的AI新贵DeepSeek-V3是杭州深度求索人工智能基础技术研究有限公司于2024年12月26日重磅发布的混合专家(MoE)语言模型。一经推出,便在知识类任务、算
- 【25年新算法】DOA-LSSVM梦境优化算法优化最小二乘支持向量机回归预测,DOA-LSSVM回归预测,多变量输入模型。梦境优化算法(DOA)-2025年3月SCI一区新算法,该算法结合了一个基
智能算法及其模型预测
支持向量机回归算法
【25年新算法】DOA-LSSVM梦境优化算法优化最小二乘支持向量机回归预测,DOA-LSSVM回归预测,多变量输入模型。梦境优化算法(DOA)-2025年3月SCI一区新算法,该算法结合了一个基本的记忆策略,一个遗忘和补充策略,以平衡探索和利用,值得一试!该成果由YifanLang于2025年3月发表在SCI一区Top期刊《ComputerMethodsinAppliedMechanicsand
- Java高级开发所具知识技能
码代码的小仙女
java知识高级开发必备技能java开发语言
以下是Java高级开发整理的知识技能,其中涵盖核心技术、框架、分布式架构、性能优化等关键领域:一、Java核心进阶JVM深度理解内存模型(堆、栈、方法区)垃圾回收算法(CMS、G1、ZGC)类加载机制与字节码增强JVM调优工具(jstat、jmap、VisualVM、Arthas)并发编程线程池(ThreadPoolExecutor、ForkJoinPool)锁机制(synchronized、Re
- 整理:4篇论文知识蒸馏引领高效模型新时代
mslion
多模态人工智能知识蒸馏
知识蒸馏(KnowledgeDistillation)是当前机器学习研究中的一个重要方向,特别是在模型压缩和效率优化等任务中。传统的深度学习模型往往依赖于复杂的大型网络,以获取卓越的性能。然而,这些庞大的模型对计算资源和存储空间的需求,使得它们在实际应用中,尤其是在边缘设备或移动端部署中面临巨大挑战。知识蒸馏技术致力于解决这一问题,其核心思想是通过一个“教师模型”向一个更小、更高效的“学生模型”传
- CentOS虚拟机如何设置共享文件夹,并在Windows下映射网络驱动器
头像好看吗
分享一下我老师大神的人工智能教程!零基础,通俗易懂!http://blog.csdn.net/jiangjunshow也欢迎大家转载本篇文章。分享知识,造福人民,实现我们中华民族伟大复兴!一、为什么要这么做?最近在做Linux下的软件开发,但又想使用Windows下的编程工具“SourceInsight”。二、安装环境本机系统:Windows7旗舰版VMware:VMwareWorkstation
- C语言数据结构学习大纲——人工智能方向
小宝哥Code
数据结构与算法c语言数据结构学习
C语言数据结构学习大纲学习C语言数据结构是计算机科学和软件开发的基础之一。以下是一个详细的C语言数据结构学习大纲,从基础概念到高级数据结构,帮助你系统性掌握数据结构,并通过C语言实现。第一部分:数据结构基础1.计算机存储与数据结构概述什么是数据结构?数据结构的分类(线性结构vs.非线性结构)数据结构与算法的关系时间复杂度与空间复杂度(Big-O记法)C语言指针与动态内存分配(malloc()、fr
- 【笔记】算法记录
regret~
算法java前端
1、求一个数的素因子(试除法)//获取一个数的所有素因子setgetPrimeFactors(intnum){setprimeFactors;for(inti=2;i*i1){primeFactors.insert(num);}returnprimeFactors;}2、计算集合的交集#include#includesetcommonFactors,primeFactors,intersectio
- Nginx负载均衡
510888780
nginx应用服务器
Nginx负载均衡一些基础知识:
nginx 的 upstream目前支持 4 种方式的分配
1)、轮询(默认)
每个请求按时间顺序逐一分配到不同的后端服务器,如果后端服务器down掉,能自动剔除。
2)、weight
指定轮询几率,weight和访问比率成正比
- RedHat 6.4 安装 rabbitmq
bylijinnan
erlangrabbitmqredhat
在 linux 下安装软件就是折腾,首先是测试机不能上外网要找运维开通,开通后发现测试机的 yum 不能使用于是又要配置 yum 源,最后安装 rabbitmq 时也尝试了两种方法最后才安装成功
机器版本:
[root@redhat1 rabbitmq]# lsb_release
LSB Version: :base-4.0-amd64:base-4.0-noarch:core
- FilenameUtils工具类
eksliang
FilenameUtilscommon-io
转载请出自出处:http://eksliang.iteye.com/blog/2217081 一、概述
这是一个Java操作文件的常用库,是Apache对java的IO包的封装,这里面有两个非常核心的类FilenameUtils跟FileUtils,其中FilenameUtils是对文件名操作的封装;FileUtils是文件封装,开发中对文件的操作,几乎都可以在这个框架里面找到。 非常的好用。
- xml文件解析SAX
不懂事的小屁孩
xml
xml文件解析:xml文件解析有四种方式,
1.DOM生成和解析XML文档(SAX是基于事件流的解析)
2.SAX生成和解析XML文档(基于XML文档树结构的解析)
3.DOM4J生成和解析XML文档
4.JDOM生成和解析XML
本文章用第一种方法进行解析,使用android常用的DefaultHandler
import org.xml.sax.Attributes;
- 通过定时任务执行mysql的定期删除和新建分区,此处是按日分区
酷的飞上天空
mysql
使用python脚本作为命令脚本,linux的定时任务来每天定时执行
#!/usr/bin/python
# -*- coding: utf8 -*-
import pymysql
import datetime
import calendar
#要分区的表
table_name = 'my_table'
#连接数据库的信息
host,user,passwd,db =
- 如何搭建数据湖架构?听听专家的意见
蓝儿唯美
架构
Edo Interactive在几年前遇到一个大问题:公司使用交易数据来帮助零售商和餐馆进行个性化促销,但其数据仓库没有足够时间去处理所有的信用卡和借记卡交易数据
“我们要花费27小时来处理每日的数据量,”Edo主管基础设施和信息系统的高级副总裁Tim Garnto说道:“所以在2013年,我们放弃了现有的基于PostgreSQL的关系型数据库系统,使用了Hadoop集群作为公司的数
- spring学习——控制反转与依赖注入
a-john
spring
控制反转(Inversion of Control,英文缩写为IoC)是一个重要的面向对象编程的法则来削减计算机程序的耦合问题,也是轻量级的Spring框架的核心。 控制反转一般分为两种类型,依赖注入(Dependency Injection,简称DI)和依赖查找(Dependency Lookup)。依赖注入应用比较广泛。
- 用spool+unixshell生成文本文件的方法
aijuans
xshell
例如我们把scott.dept表生成文本文件的语句写成dept.sql,内容如下:
set pages 50000;
set lines 200;
set trims on;
set heading off;
spool /oracle_backup/log/test/dept.lst;
select deptno||','||dname||','||loc
- 1、基础--名词解析(OOA/OOD/OOP)
asia007
学习基础知识
OOA:Object-Oriented Analysis(面向对象分析方法)
是在一个系统的开发过程中进行了系统业务调查以后,按照面向对象的思想来分析问题。OOA与结构化分析有较大的区别。OOA所强调的是在系统调查资料的基础上,针对OO方法所需要的素材进行的归类分析和整理,而不是对管理业务现状和方法的分析。
OOA(面向对象的分析)模型由5个层次(主题层、对象类层、结构层、属性层和服务层)
- 浅谈java转成json编码格式技术
百合不是茶
json编码java转成json编码
json编码;是一个轻量级的数据存储和传输的语言
在java中需要引入json相关的包,引包方式在工程的lib下就可以了
JSON与JAVA数据的转换(JSON 即 JavaScript Object Natation,它是一种轻量级的数据交换格式,非
常适合于服务器与 JavaScript 之间的数据的交
- web.xml之Spring配置(基于Spring+Struts+Ibatis)
bijian1013
javaweb.xmlSSIspring配置
指定Spring配置文件位置
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>
/WEB-INF/spring-dao-bean.xml,/WEB-INF/spring-resources.xml,
/WEB-INF/
- Installing SonarQube(Fail to download libraries from server)
sunjing
InstallSonar
1. Download and unzip the SonarQube distribution
2. Starting the Web Server
The default port is "9000" and the context path is "/". These values can be changed in &l
- 【MongoDB学习笔记十一】Mongo副本集基本的增删查
bit1129
mongodb
一、创建复本集
假设mongod,mongo已经配置在系统路径变量上,启动三个命令行窗口,分别执行如下命令:
mongod --port 27017 --dbpath data1 --replSet rs0
mongod --port 27018 --dbpath data2 --replSet rs0
mongod --port 27019 -
- Anychart图表系列二之执行Flash和HTML5渲染
白糖_
Flash
今天介绍Anychart的Flash和HTML5渲染功能
HTML5
Anychart从6.0第一个版本起,已经逐渐开始支持各种图的HTML5渲染效果了,也就是说即使你没有安装Flash插件,只要浏览器支持HTML5,也能看到Anychart的图形(不过这些是需要做一些配置的)。
这里要提醒下大家,Anychart6.0版本对HTML5的支持还不算很成熟,目前还处于
- Laravel版本更新异常4.2.8-> 4.2.9 Declaration of ... CompilerEngine ... should be compa
bozch
laravel
昨天在为了把laravel升级到最新的版本,突然之间就出现了如下错误:
ErrorException thrown with message "Declaration of Illuminate\View\Engines\CompilerEngine::handleViewException() should be compatible with Illuminate\View\Eng
- 编程之美-NIM游戏分析-石头总数为奇数时如何保证先动手者必胜
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class Nim {
/**编程之美 NIM游戏分析
问题:
有N块石头和两个玩家A和B,玩家A先将石头随机分成若干堆,然后按照BABA...的顺序不断轮流取石头,
能将剩下的石头一次取光的玩家获胜,每次取石头时,每个玩家只能从若干堆石头中任选一堆,
- lunce创建索引及简单查询
chengxuyuancsdn
查询创建索引lunce
import java.io.File;
import java.io.IOException;
import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.document.Docume
- [IT与投资]坚持独立自主的研究核心技术
comsci
it
和别人合作开发某项产品....如果互相之间的技术水平不同,那么这种合作很难进行,一般都会成为强者控制弱者的方法和手段.....
所以弱者,在遇到技术难题的时候,最好不要一开始就去寻求强者的帮助,因为在我们这颗星球上,生物都有一种控制其
- flashback transaction闪回事务查询
daizj
oraclesql闪回事务
闪回事务查询有别于闪回查询的特点有以下3个:
(1)其正常工作不但需要利用撤销数据,还需要事先启用最小补充日志。
(2)返回的结果不是以前的“旧”数据,而是能够将当前数据修改为以前的样子的撤销SQL(Undo SQL)语句。
(3)集中地在名为flashback_transaction_query表上查询,而不是在各个表上通过“as of”或“vers
- Java I/O之FilenameFilter类列举出指定路径下某个扩展名的文件
游其是你
FilenameFilter
这是一个FilenameFilter类用法的例子,实现的列举出“c:\\folder“路径下所有以“.jpg”扩展名的文件。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
- C语言学习五函数,函数的前置声明以及如何在软件开发中合理的设计函数来解决实际问题
dcj3sjt126com
c
# include <stdio.h>
int f(void) //括号中的void表示该函数不能接受数据,int表示返回的类型为int类型
{
return 10; //向主调函数返回10
}
void g(void) //函数名前面的void表示该函数没有返回值
{
//return 10; //error 与第8行行首的void相矛盾
}
in
- 今天在测试环境使用yum安装,遇到一个问题: Error: Cannot retrieve metalink for repository: epel. Pl
dcj3sjt126com
centos
今天在测试环境使用yum安装,遇到一个问题:
Error: Cannot retrieve metalink for repository: epel. Please verify its path and try again
处理很简单,修改文件“/etc/yum.repos.d/epel.repo”, 将baseurl的注释取消, mirrorlist注释掉。即可。
&n
- 单例模式
shuizhaosi888
单例模式
单例模式 懒汉式
public class RunMain {
/**
* 私有构造
*/
private RunMain() {
}
/**
* 内部类,用于占位,只有
*/
private static class SingletonRunMain {
priv
- Spring Security(09)——Filter
234390216
Spring Security
Filter
目录
1.1 Filter顺序
1.2 添加Filter到FilterChain
1.3 DelegatingFilterProxy
1.4 FilterChainProxy
1.5
- 公司项目NODEJS实践0.1
逐行分析JS源代码
mongodbnginxubuntunodejs
一、前言
前端如何独立用nodeJs实现一个简单的注册、登录功能,是不是只用nodejs+sql就可以了?其实是可以实现,但离实际应用还有距离,那要怎么做才是实际可用的。
网上有很多nod
- java.lang.Math
liuhaibo_ljf
javaMathlang
System.out.println(Math.PI);
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1));
System.out.println(Math.abs(111111111));
System.out.println(Mat
- linux下时间同步
nonobaba
ntp
今天在linux下做hbase集群的时候,发现hmaster启动成功了,但是用hbase命令进入shell的时候报了一个错误 PleaseHoldException: Master is initializing,查看了日志,大致意思是说master和slave时间不同步,没办法,只好找一种手动同步一下,后来发现一共部署了10来台机器,手动同步偏差又比较大,所以还是从网上找现成的解决方
- ZooKeeper3.4.6的集群部署
roadrunners
zookeeper集群部署
ZooKeeper是Apache的一个开源项目,在分布式服务中应用比较广泛。它主要用来解决分布式应用中经常遇到的一些数据管理问题,如:统一命名服务、状态同步、集群管理、配置文件管理、同步锁、队列等。这里主要讲集群中ZooKeeper的部署。
1、准备工作
我们准备3台机器做ZooKeeper集群,分别在3台机器上创建ZooKeeper需要的目录。
数据存储目录
- Java高效读取大文件
tomcat_oracle
java
读取文件行的标准方式是在内存中读取,Guava 和Apache Commons IO都提供了如下所示快速读取文件行的方法: Files.readLines(new File(path), Charsets.UTF_8); FileUtils.readLines(new File(path)); 这种方法带来的问题是文件的所有行都被存放在内存中,当文件足够大时很快就会导致
- 微信支付api返回的xml转换为Map的方法
xu3508620
xmlmap微信api
举例如下:
<xml>
<return_code><![CDATA[SUCCESS]]></return_code>
<return_msg><![CDATA[OK]]></return_msg>
<appid><