java动态代理

生成步骤

1. Proxy.newProxyInstance
2. Constructor<?> cons = getProxyConstructor(caller, loader, interfaces);
3. (ld, clv) -> new ProxyBuilder(ld, clv.key()).build()
4. byte[] proxyClassFile = ProxyGenerator.generateProxyClass(proxyName,interfaces.toArray(EMPTY_CLASS_ARRAY), accessFlags);
5. final byte[] classFile = gen.generateClassFile();

代码

IPerson.java

public interface IPerson {
    String stduy(String name);
}

JDKProxy

package A002动态代理;

import java.lang.reflect.InvocationHandler;
import java.lang.reflect.Method;
import java.lang.reflect.Proxy;

public class JDKProxy<T> {
    //需要代理的对象。这里我们使用Iperson来接收Tom对象
    private T target;

    public void setTarget(T target) {
        this.target = target;
    }

    public T getProxy() {
        Object o = Proxy.newProxyInstance(target.getClass().getClassLoader(),
                target.getClass().getInterfaces(), new InvocationHandler() {
                    /**
                     *
                     * @param proxy 生产的代理对象
                     * @param method 执行的方法
                     * @param args 执行的方法的入参
                     * @return 返回方法执行的结果
                     * @throws Throwable
                     */
                    @Override
                    public Object invoke(Object proxy, Method method, Object[] args) throws Throwable {
                        System.out.println("方法执行前");
                        //执行原有的方法
                        Object invoke = method.invoke(target, args);
                        System.out.println("方法执行后");
                        return invoke;
                    }
                });
        return (T) o;
    }
}

Tom

package A002动态代理;

public class Tom implements IPerson {
    @Override
    public String stduy(String name) {
        System.out.println("执行原生方法");
        return Tom.class.getName()+name;
    }
}

Test

package A002动态代理;

import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOException;

public class Test {
    public static void main(String[] args) throws IOException {
        JDKProxy<IPerson> iPersonJDKProxy = new JDKProxy<>();
        //需要被代理的对象
        IPerson tom = new Tom();
        iPersonJDKProxy.setTarget(tom);
        //获取代理对象,此时这个对象就不再是上面的tom了
        IPerson proxy = iPersonJDKProxy.getProxy();
        proxy.stduy("java");

        // 代理类的字节码数组
        byte[] proxyClassFile = ProxyGenerator.generateProxyClass(
                "RProxy0",
                new Class[]{IPerson.class});
        FileOutputStream fileOutputStream = new FileOutputStream("/Users/zhaojian/code/java/InterviewDemo/src/main/kotlin/A002动态代理/IPersonProxy.class");
        fileOutputStream.write(proxyClassFile);
        fileOutputStream.flush();
        fileOutputStream.close();
    }
}

ProxyGenerator

package A002动态代理;

import java.io.*;
import java.lang.reflect.Array;
import java.lang.reflect.Method;
import java.lang.reflect.Modifier;
import java.nio.file.Files;
import java.nio.file.Path;
import java.util.*;
//import sun.security.action.GetBooleanAction;

/**
 * ProxyGenerator contains the code to generate a dynamic proxy class
 * for the java.lang.reflect.Proxy API.
 * 

* The external interfaces to ProxyGenerator is the static * "generateProxyClass" method. * * @author Peter Jones * @since 1.3 */ class ProxyGenerator { /* * In the comments below, "JVMS" refers to The Java Virtual Machine * Specification Second Edition and "JLS" refers to the original * version of The Java Language Specification, unless otherwise * specified. */ /* generate 1.5-era class file version */ private static final int CLASSFILE_MAJOR_VERSION = 49; private static final int CLASSFILE_MINOR_VERSION = 0; /* * beginning of constants copied from * sun.tools.java.RuntimeConstants (which no longer exists): */ /* constant pool tags */ private static final int CONSTANT_UTF8 = 1; private static final int CONSTANT_UNICODE = 2; private static final int CONSTANT_INTEGER = 3; private static final int CONSTANT_FLOAT = 4; private static final int CONSTANT_LONG = 5; private static final int CONSTANT_DOUBLE = 6; private static final int CONSTANT_CLASS = 7; private static final int CONSTANT_STRING = 8; private static final int CONSTANT_FIELD = 9; private static final int CONSTANT_METHOD = 10; private static final int CONSTANT_INTERFACEMETHOD = 11; private static final int CONSTANT_NAMEANDTYPE = 12; /* access and modifier flags */ private static final int ACC_PUBLIC = 0x00000001; private static final int ACC_PRIVATE = 0x00000002; // private static final int ACC_PROTECTED = 0x00000004; private static final int ACC_STATIC = 0x00000008; private static final int ACC_FINAL = 0x00000010; // private static final int ACC_SYNCHRONIZED = 0x00000020; // private static final int ACC_VOLATILE = 0x00000040; // private static final int ACC_TRANSIENT = 0x00000080; // private static final int ACC_NATIVE = 0x00000100; // private static final int ACC_INTERFACE = 0x00000200; // private static final int ACC_ABSTRACT = 0x00000400; private static final int ACC_SUPER = 0x00000020; // private static final int ACC_STRICT = 0x00000800; /* opcodes */ // private static final int opc_nop = 0; private static final int opc_aconst_null = 1; // private static final int opc_iconst_m1 = 2; private static final int opc_iconst_0 = 3; // private static final int opc_iconst_1 = 4; // private static final int opc_iconst_2 = 5; // private static final int opc_iconst_3 = 6; // private static final int opc_iconst_4 = 7; // private static final int opc_iconst_5 = 8; // private static final int opc_lconst_0 = 9; // private static final int opc_lconst_1 = 10; // private static final int opc_fconst_0 = 11; // private static final int opc_fconst_1 = 12; // private static final int opc_fconst_2 = 13; // private static final int opc_dconst_0 = 14; // private static final int opc_dconst_1 = 15; private static final int opc_bipush = 16; private static final int opc_sipush = 17; private static final int opc_ldc = 18; private static final int opc_ldc_w = 19; // private static final int opc_ldc2_w = 20; private static final int opc_iload = 21; private static final int opc_lload = 22; private static final int opc_fload = 23; private static final int opc_dload = 24; private static final int opc_aload = 25; private static final int opc_iload_0 = 26; // private static final int opc_iload_1 = 27; // private static final int opc_iload_2 = 28; // private static final int opc_iload_3 = 29; private static final int opc_lload_0 = 30; // private static final int opc_lload_1 = 31; // private static final int opc_lload_2 = 32; // private static final int opc_lload_3 = 33; private static final int opc_fload_0 = 34; // private static final int opc_fload_1 = 35; // private static final int opc_fload_2 = 36; // private static final int opc_fload_3 = 37; private static final int opc_dload_0 = 38; // private static final int opc_dload_1 = 39; // private static final int opc_dload_2 = 40; // private static final int opc_dload_3 = 41; private static final int opc_aload_0 = 42; // private static final int opc_aload_1 = 43; // private static final int opc_aload_2 = 44; // private static final int opc_aload_3 = 45; // private static final int opc_iaload = 46; // private static final int opc_laload = 47; // private static final int opc_faload = 48; // private static final int opc_daload = 49; // private static final int opc_aaload = 50; // private static final int opc_baload = 51; // private static final int opc_caload = 52; // private static final int opc_saload = 53; // private static final int opc_istore = 54; // private static final int opc_lstore = 55; // private static final int opc_fstore = 56; // private static final int opc_dstore = 57; private static final int opc_astore = 58; // private static final int opc_istore_0 = 59; // private static final int opc_istore_1 = 60; // private static final int opc_istore_2 = 61; // private static final int opc_istore_3 = 62; // private static final int opc_lstore_0 = 63; // private static final int opc_lstore_1 = 64; // private static final int opc_lstore_2 = 65; // private static final int opc_lstore_3 = 66; // private static final int opc_fstore_0 = 67; // private static final int opc_fstore_1 = 68; // private static final int opc_fstore_2 = 69; // private static final int opc_fstore_3 = 70; // private static final int opc_dstore_0 = 71; // private static final int opc_dstore_1 = 72; // private static final int opc_dstore_2 = 73; // private static final int opc_dstore_3 = 74; private static final int opc_astore_0 = 75; // private static final int opc_astore_1 = 76; // private static final int opc_astore_2 = 77; // private static final int opc_astore_3 = 78; // private static final int opc_iastore = 79; // private static final int opc_lastore = 80; // private static final int opc_fastore = 81; // private static final int opc_dastore = 82; private static final int opc_aastore = 83; // private static final int opc_bastore = 84; // private static final int opc_castore = 85; // private static final int opc_sastore = 86; private static final int opc_pop = 87; // private static final int opc_pop2 = 88; private static final int opc_dup = 89; // private static final int opc_dup_x1 = 90; // private static final int opc_dup_x2 = 91; // private static final int opc_dup2 = 92; // private static final int opc_dup2_x1 = 93; // private static final int opc_dup2_x2 = 94; // private static final int opc_swap = 95; // private static final int opc_iadd = 96; // private static final int opc_ladd = 97; // private static final int opc_fadd = 98; // private static final int opc_dadd = 99; // private static final int opc_isub = 100; // private static final int opc_lsub = 101; // private static final int opc_fsub = 102; // private static final int opc_dsub = 103; // private static final int opc_imul = 104; // private static final int opc_lmul = 105; // private static final int opc_fmul = 106; // private static final int opc_dmul = 107; // private static final int opc_idiv = 108; // private static final int opc_ldiv = 109; // private static final int opc_fdiv = 110; // private static final int opc_ddiv = 111; // private static final int opc_irem = 112; // private static final int opc_lrem = 113; // private static final int opc_frem = 114; // private static final int opc_drem = 115; // private static final int opc_ineg = 116; // private static final int opc_lneg = 117; // private static final int opc_fneg = 118; // private static final int opc_dneg = 119; // private static final int opc_ishl = 120; // private static final int opc_lshl = 121; // private static final int opc_ishr = 122; // private static final int opc_lshr = 123; // private static final int opc_iushr = 124; // private static final int opc_lushr = 125; // private static final int opc_iand = 126; // private static final int opc_land = 127; // private static final int opc_ior = 128; // private static final int opc_lor = 129; // private static final int opc_ixor = 130; // private static final int opc_lxor = 131; // private static final int opc_iinc = 132; // private static final int opc_i2l = 133; // private static final int opc_i2f = 134; // private static final int opc_i2d = 135; // private static final int opc_l2i = 136; // private static final int opc_l2f = 137; // private static final int opc_l2d = 138; // private static final int opc_f2i = 139; // private static final int opc_f2l = 140; // private static final int opc_f2d = 141; // private static final int opc_d2i = 142; // private static final int opc_d2l = 143; // private static final int opc_d2f = 144; // private static final int opc_i2b = 145; // private static final int opc_i2c = 146; // private static final int opc_i2s = 147; // private static final int opc_lcmp = 148; // private static final int opc_fcmpl = 149; // private static final int opc_fcmpg = 150; // private static final int opc_dcmpl = 151; // private static final int opc_dcmpg = 152; // private static final int opc_ifeq = 153; // private static final int opc_ifne = 154; // private static final int opc_iflt = 155; // private static final int opc_ifge = 156; // private static final int opc_ifgt = 157; // private static final int opc_ifle = 158; // private static final int opc_if_icmpeq = 159; // private static final int opc_if_icmpne = 160; // private static final int opc_if_icmplt = 161; // private static final int opc_if_icmpge = 162; // private static final int opc_if_icmpgt = 163; // private static final int opc_if_icmple = 164; // private static final int opc_if_acmpeq = 165; // private static final int opc_if_acmpne = 166; // private static final int opc_goto = 167; // private static final int opc_jsr = 168; // private static final int opc_ret = 169; // private static final int opc_tableswitch = 170; // private static final int opc_lookupswitch = 171; private static final int opc_ireturn = 172; private static final int opc_lreturn = 173; private static final int opc_freturn = 174; private static final int opc_dreturn = 175; private static final int opc_areturn = 176; private static final int opc_return = 177; private static final int opc_getstatic = 178; private static final int opc_putstatic = 179; private static final int opc_getfield = 180; // private static final int opc_putfield = 181; private static final int opc_invokevirtual = 182; private static final int opc_invokespecial = 183; private static final int opc_invokestatic = 184; private static final int opc_invokeinterface = 185; private static final int opc_new = 187; // private static final int opc_newarray = 188; private static final int opc_anewarray = 189; // private static final int opc_arraylength = 190; private static final int opc_athrow = 191; private static final int opc_checkcast = 192; // private static final int opc_instanceof = 193; // private static final int opc_monitorenter = 194; // private static final int opc_monitorexit = 195; private static final int opc_wide = 196; // private static final int opc_multianewarray = 197; // private static final int opc_ifnull = 198; // private static final int opc_ifnonnull = 199; // private static final int opc_goto_w = 200; // private static final int opc_jsr_w = 201; // end of constants copied from sun.tools.java.RuntimeConstants /** * name of the superclass of proxy classes */ private static final String superclassName = "java/lang/reflect/Proxy"; /** * name of field for storing a proxy instance's invocation handler */ private static final String handlerFieldName = "h"; /** * debugging flag for saving generated class files */ private static final boolean saveGeneratedFiles = true; //java.security.AccessController.doPrivileged(new GetBooleanAction("jdk.proxy.ProxyGenerator.saveGeneratedFiles")).booleanValue(); /* preloaded Method objects for methods in java.lang.Object */ private static final Method hashCodeMethod; private static final Method equalsMethod; private static final Method toStringMethod; static { try { hashCodeMethod = Object.class.getMethod("hashCode"); equalsMethod = Object.class.getMethod("equals", Object.class); toStringMethod = Object.class.getMethod("toString"); } catch (NoSuchMethodException e) { throw new NoSuchMethodError(e.getMessage()); } } /** * name of proxy class */ private final String className; /** * proxy interfaces */ private final Class<?>[] interfaces; /** * proxy class access flags */ private final int accessFlags; /** * constant pool of class being generated */ private final ConstantPool cp = new ConstantPool(); /** * FieldInfo struct for each field of generated class */ private final List<FieldInfo> fields = new ArrayList<>(); /** * MethodInfo struct for each method of generated class */ private final List<MethodInfo> methods = new ArrayList<>(); /** * maps method signature string to list of ProxyMethod objects for * proxy methods with that signature */ private final Map<String, List<ProxyMethod>> proxyMethods = new HashMap<>(); /** * count of ProxyMethod objects added to proxyMethods */ private int proxyMethodCount = 0; /** * Construct a ProxyGenerator to generate a proxy class with the * specified name and for the given interfaces. *

* A ProxyGenerator object contains the state for the ongoing * generation of a particular proxy class. */ private ProxyGenerator(String className, Class<?>[] interfaces, int accessFlags) { this.className = className; this.interfaces = interfaces; this.accessFlags = accessFlags; } /** * Generate a public proxy class given a name and a list of proxy interfaces. */ static byte[] generateProxyClass(final String name, Class<?>[] interfaces) { return generateProxyClass(name, interfaces, (ACC_PUBLIC | ACC_FINAL | ACC_SUPER)); } /** * Generate a proxy class given a name and a list of proxy interfaces. * * @param name the class name of the proxy class * @param interfaces proxy interfaces * @param accessFlags access flags of the proxy class */ static byte[] generateProxyClass(final String name, Class<?>[] interfaces, int accessFlags) { ProxyGenerator gen = new ProxyGenerator(name, interfaces, accessFlags); final byte[] classFile = gen.generateClassFile(); if (saveGeneratedFiles) { java.security.AccessController.doPrivileged( new java.security.PrivilegedAction<Void>() { public Void run() { try { int i = name.lastIndexOf('.'); Path path; if (i > 0) { Path dir = Path.of(name.substring(0, i).replace('.', File.separatorChar)); Files.createDirectories(dir); path = dir.resolve(name.substring(i + 1) + ".class"); } else { path = Path.of(name + ".class"); } Files.write(path, classFile); return null; } catch (IOException e) { throw new InternalError( "I/O exception saving generated file: " + e); } } }); } return classFile; } /** * For a given set of proxy methods with the same signature, check * that their return types are compatible according to the Proxy * specification. *

* Specifically, if there is more than one such method, then all * of the return types must be reference types, and there must be * one return type that is assignable to each of the rest of them. */ private static void checkReturnTypes(List<ProxyMethod> methods) { /* * If there is only one method with a given signature, there * cannot be a conflict. This is the only case in which a * primitive (or void) return type is allowed. */ if (methods.size() < 2) { return; } /* * List of return types that are not yet known to be * assignable from ("covered" by) any of the others. */ LinkedList<Class<?>> uncoveredReturnTypes = new LinkedList<>(); nextNewReturnType: for (ProxyMethod pm : methods) { Class<?> newReturnType = pm.returnType; if (newReturnType.isPrimitive()) { throw new IllegalArgumentException( "methods with same signature " + getFriendlyMethodSignature(pm.methodName, pm.parameterTypes) + " but incompatible return types: " + newReturnType.getName() + " and others"); } boolean added = false; /* * Compare the new return type to the existing uncovered * return types. */ ListIterator<Class<?>> liter = uncoveredReturnTypes.listIterator(); while (liter.hasNext()) { Class<?> uncoveredReturnType = liter.next(); /* * If an existing uncovered return type is assignable * to this new one, then we can forget the new one. */ if (newReturnType.isAssignableFrom(uncoveredReturnType)) { assert !added; continue nextNewReturnType; } /* * If the new return type is assignable to an existing * uncovered one, then should replace the existing one * with the new one (or just forget the existing one, * if the new one has already be put in the list). */ if (uncoveredReturnType.isAssignableFrom(newReturnType)) { // (we can assume that each return type is unique) if (!added) { liter.set(newReturnType); added = true; } else { liter.remove(); } } } /* * If we got through the list of existing uncovered return * types without an assignability relationship, then add * the new return type to the list of uncovered ones. */ if (!added) { uncoveredReturnTypes.add(newReturnType); } } /* * We shouldn't end up with more than one return type that is * not assignable from any of the others. */ if (uncoveredReturnTypes.size() > 1) { ProxyMethod pm = methods.get(0); throw new IllegalArgumentException( "methods with same signature " + getFriendlyMethodSignature(pm.methodName, pm.parameterTypes) + " but incompatible return types: " + uncoveredReturnTypes); } } /** * Convert a fully qualified class name that uses '.' as the package * separator, the external representation used by the Java language * and APIs, to a fully qualified class name that uses '/' as the * package separator, the representation used in the class file * format (see JVMS section 4.2). */ private static String dotToSlash(String name) { return name.replace('.', '/'); } /** * Return the "method descriptor" string for a method with the given * parameter types and return type. See JVMS section 4.3.3. */ private static String getMethodDescriptor(Class<?>[] parameterTypes, Class<?> returnType) { return getParameterDescriptors(parameterTypes) + ((returnType == void.class) ? "V" : getFieldType(returnType)); } /** * Return the list of "parameter descriptor" strings enclosed in * parentheses corresponding to the given parameter types (in other * words, a method descriptor without a return descriptor). This * string is useful for constructing string keys for methods without * regard to their return type. */ private static String getParameterDescriptors(Class<?>[] parameterTypes) { StringBuilder desc = new StringBuilder("("); for (int i = 0; i < parameterTypes.length; i++) { desc.append(getFieldType(parameterTypes[i])); } desc.append(')'); return desc.toString(); } /** * Return the "field type" string for the given type, appropriate for * a field descriptor, a parameter descriptor, or a return descriptor * other than "void". See JVMS section 4.3.2. */ private static String getFieldType(Class<?> type) { if (type.isPrimitive()) { return PrimitiveTypeInfo.get(type).baseTypeString; } else if (type.isArray()) { /* * According to JLS 20.3.2, the getName() method on Class does * return the VM type descriptor format for array classes (only); * using that should be quicker than the otherwise obvious code: * * return "[" + getTypeDescriptor(type.getComponentType()); */ return type.getName().replace('.', '/'); } else { return "L" + dotToSlash(type.getName()) + ";"; } } /** * Returns a human-readable string representing the signature of a * method with the given name and parameter types. */ private static String getFriendlyMethodSignature(String name, Class<?>[] parameterTypes) { StringBuilder sig = new StringBuilder(name); sig.append('('); for (int i = 0; i < parameterTypes.length; i++) { if (i > 0) { sig.append(','); } Class<?> parameterType = parameterTypes[i]; int dimensions = 0; while (parameterType.isArray()) { parameterType = parameterType.getComponentType(); dimensions++; } sig.append(parameterType.getName()); while (dimensions-- > 0) { sig.append("[]"); } } sig.append(')'); return sig.toString(); } /** * Return the number of abstract "words", or consecutive local variable * indexes, required to contain a value of the given type. See JVMS * section 3.6.1. *

* Note that the original version of the JVMS contained a definition of * this abstract notion of a "word" in section 3.4, but that definition * was removed for the second edition. */ private static int getWordsPerType(Class<?> type) { if (type == long.class || type == double.class) { return 2; } else { return 1; } } /** * Add to the given list all of the types in the "from" array that * are not already contained in the list and are assignable to at * least one of the types in the "with" array. *

* This method is useful for computing the greatest common set of * declared exceptions from duplicate methods inherited from * different interfaces. */ private static void collectCompatibleTypes(Class<?>[] from, Class<?>[] with, List<Class<?>> list) { for (Class<?> fc : from) { if (!list.contains(fc)) { for (Class<?> wc : with) { if (wc.isAssignableFrom(fc)) { list.add(fc); break; } } } } } /** * Given the exceptions declared in the throws clause of a proxy method, * compute the exceptions that need to be caught from the invocation * handler's invoke method and rethrown intact in the method's * implementation before catching other Throwables and wrapping them * in UndeclaredThrowableExceptions. *

* The exceptions to be caught are returned in a List object. Each * exception in the returned list is guaranteed to not be a subclass of * any of the other exceptions in the list, so the catch blocks for * these exceptions may be generated in any order relative to each other. *

* Error and RuntimeException are each always contained by the returned * list (if none of their superclasses are contained), since those * unchecked exceptions should always be rethrown intact, and thus their * subclasses will never appear in the returned list. *

* The returned List will be empty if java.lang.Throwable is in the * given list of declared exceptions, indicating that no exceptions * need to be caught. */ private static List<Class<?>> computeUniqueCatchList(Class<?>[] exceptions) { List<Class<?>> uniqueList = new ArrayList<>(); // unique exceptions to catch uniqueList.add(Error.class); // always catch/rethrow these uniqueList.add(RuntimeException.class); nextException: for (Class<?> ex : exceptions) { if (ex.isAssignableFrom(Throwable.class)) { /* * If Throwable is declared to be thrown by the proxy method, * then no catch blocks are necessary, because the invoke * can, at most, throw Throwable anyway. */ uniqueList.clear(); break; } else if (!Throwable.class.isAssignableFrom(ex)) { /* * Ignore types that cannot be thrown by the invoke method. */ continue; } /* * Compare this exception against the current list of * exceptions that need to be caught: */ for (int j = 0; j < uniqueList.size(); ) { Class<?> ex2 = uniqueList.get(j); if (ex2.isAssignableFrom(ex)) { /* * if a superclass of this exception is already on * the list to catch, then ignore this one and continue; */ continue nextException; } else if (ex.isAssignableFrom(ex2)) { /* * if a subclass of this exception is on the list * to catch, then remove it; */ uniqueList.remove(j); } else { j++; // else continue comparing. } } // This exception is unique (so far): add it to the list to catch. uniqueList.add(ex); } return uniqueList; } /* * =============== Code Generation Utility Methods =============== */ /* * The following methods generate code for the load or store operation * indicated by their name for the given local variable. The code is * written to the supplied stream. */ /** * Generate a class file for the proxy class. This method drives the * class file generation process. */ private byte[] generateClassFile() { /* ============================================================ * Step 1: Assemble ProxyMethod objects for all methods to * generate proxy dispatching code for. */ /* * Record that proxy methods are needed for the hashCode, equals, * and toString methods of java.lang.Object. This is done before * the methods from the proxy interfaces so that the methods from * java.lang.Object take precedence over duplicate methods in the * proxy interfaces. */ addProxyMethod(hashCodeMethod, Object.class); addProxyMethod(equalsMethod, Object.class); addProxyMethod(toStringMethod, Object.class); /* * Now record all of the methods from the proxy interfaces, giving * earlier interfaces precedence over later ones with duplicate * methods. */ for (Class<?> intf : interfaces) { for (Method m : intf.getMethods()) { if (!Modifier.isStatic(m.getModifiers())) { addProxyMethod(m, intf); } } } /* * For each set of proxy methods with the same signature, * verify that the methods' return types are compatible. */ for (List<ProxyMethod> sigmethods : proxyMethods.values()) { checkReturnTypes(sigmethods); } /* ============================================================ * Step 2: Assemble FieldInfo and MethodInfo structs for all of * fields and methods in the class we are generating. */ try { methods.add(generateConstructor()); for (List<ProxyMethod> sigmethods : proxyMethods.values()) { for (ProxyMethod pm : sigmethods) { // add static field for method's Method object fields.add(new FieldInfo(pm.methodFieldName, "Ljava/lang/reflect/Method;", ACC_PRIVATE | ACC_STATIC)); // generate code for proxy method and add it methods.add(pm.generateMethod()); } } methods.add(generateStaticInitializer()); } catch (IOException e) { throw new InternalError("unexpected I/O Exception", e); } if (methods.size() > 65535) { throw new IllegalArgumentException("method limit exceeded"); } if (fields.size() > 65535) { throw new IllegalArgumentException("field limit exceeded"); } /* ============================================================ * Step 3: Write the final class file. */ /* * Make sure that constant pool indexes are reserved for the * following items before starting to write the final class file. */ cp.getClass(dotToSlash(className)); cp.getClass(superclassName); for (Class<?> intf : interfaces) { cp.getClass(dotToSlash(intf.getName())); } /* * Disallow new constant pool additions beyond this point, since * we are about to write the final constant pool table. */ cp.setReadOnly(); ByteArrayOutputStream bout = new ByteArrayOutputStream(); DataOutputStream dout = new DataOutputStream(bout); try { /* * Write all the items of the "ClassFile" structure. * See JVMS section 4.1. */ // u4 magic; dout.writeInt(0xCAFEBABE); // u2 minor_version; dout.writeShort(CLASSFILE_MINOR_VERSION); // u2 major_version; dout.writeShort(CLASSFILE_MAJOR_VERSION); cp.write(dout); // (write constant pool) // u2 access_flags; dout.writeShort(accessFlags); // u2 this_class; dout.writeShort(cp.getClass(dotToSlash(className))); // u2 super_class; dout.writeShort(cp.getClass(superclassName)); // u2 interfaces_count; dout.writeShort(interfaces.length); // u2 interfaces[interfaces_count]; for (Class<?> intf : interfaces) { dout.writeShort(cp.getClass( dotToSlash(intf.getName()))); } // u2 fields_count; dout.writeShort(fields.size()); // field_info fields[fields_count]; for (FieldInfo f : fields) { f.write(dout); } // u2 methods_count; dout.writeShort(methods.size()); // method_info methods[methods_count]; for (MethodInfo m : methods) { m.write(dout); } // u2 attributes_count; dout.writeShort(0); // (no ClassFile attributes for proxy classes) } catch (IOException e) { throw new InternalError("unexpected I/O Exception", e); } return bout.toByteArray(); } /** * Add another method to be proxied, either by creating a new * ProxyMethod object or augmenting an old one for a duplicate * method. *

* "fromClass" indicates the proxy interface that the method was * found through, which may be different from (a subinterface of) * the method's "declaring class". Note that the first Method * object passed for a given name and descriptor identifies the * Method object (and thus the declaring class) that will be * passed to the invocation handler's "invoke" method for a given * set of duplicate methods. */ private void addProxyMethod(Method m, Class<?> fromClass) { String name = m.getName(); Class<?>[] parameterTypes = m.getParameterTypes(); Class<?> returnType = m.getReturnType(); Class<?>[] exceptionTypes = m.getExceptionTypes(); String sig = name + getParameterDescriptors(parameterTypes); List<ProxyMethod> sigmethods = proxyMethods.get(sig); if (sigmethods != null) { for (ProxyMethod pm : sigmethods) { if (returnType == pm.returnType) { /* * Found a match: reduce exception types to the * greatest set of exceptions that can thrown * compatibly with the throws clauses of both * overridden methods. */ List<Class<?>> legalExceptions = new ArrayList<>(); collectCompatibleTypes( exceptionTypes, pm.exceptionTypes, legalExceptions); collectCompatibleTypes( pm.exceptionTypes, exceptionTypes, legalExceptions); pm.exceptionTypes = new Class<?>[legalExceptions.size()]; pm.exceptionTypes = legalExceptions.toArray(pm.exceptionTypes); return; } } } else { sigmethods = new ArrayList<>(3); proxyMethods.put(sig, sigmethods); } sigmethods.add(new ProxyMethod(name, parameterTypes, returnType, exceptionTypes, fromClass)); } /** * Generate the constructor method for the proxy class. */ private MethodInfo generateConstructor() throws IOException { MethodInfo minfo = new MethodInfo( "", "(Ljava/lang/reflect/InvocationHandler;)V", ACC_PUBLIC); DataOutputStream out = new DataOutputStream(minfo.code); code_aload(0, out); code_aload(1, out); out.writeByte(opc_invokespecial); out.writeShort(cp.getMethodRef( superclassName, "", "(Ljava/lang/reflect/InvocationHandler;)V")); out.writeByte(opc_return); minfo.maxStack = 10; minfo.maxLocals = 2; minfo.declaredExceptions = new short[0]; return minfo; } /** * Generate the static initializer method for the proxy class. */ private MethodInfo generateStaticInitializer() throws IOException { MethodInfo minfo = new MethodInfo( "", "()V", ACC_STATIC); int localSlot0 = 1; short pc, tryBegin = 0, tryEnd; DataOutputStream out = new DataOutputStream(minfo.code); for (List<ProxyMethod> sigmethods : proxyMethods.values()) { for (ProxyMethod pm : sigmethods) { pm.codeFieldInitialization(out); } } out.writeByte(opc_return); tryEnd = pc = (short) minfo.code.size(); minfo.exceptionTable.add(new ExceptionTableEntry( tryBegin, tryEnd, pc, cp.getClass("java/lang/NoSuchMethodException"))); code_astore(localSlot0, out); out.writeByte(opc_new); out.writeShort(cp.getClass("java/lang/NoSuchMethodError")); out.writeByte(opc_dup); code_aload(localSlot0, out); out.writeByte(opc_invokevirtual); out.writeShort(cp.getMethodRef( "java/lang/Throwable", "getMessage", "()Ljava/lang/String;")); out.writeByte(opc_invokespecial); out.writeShort(cp.getMethodRef( "java/lang/NoSuchMethodError", "", "(Ljava/lang/String;)V")); out.writeByte(opc_athrow); pc = (short) minfo.code.size(); minfo.exceptionTable.add(new ExceptionTableEntry( tryBegin, tryEnd, pc, cp.getClass("java/lang/ClassNotFoundException"))); code_astore(localSlot0, out); out.writeByte(opc_new); out.writeShort(cp.getClass("java/lang/NoClassDefFoundError")); out.writeByte(opc_dup); code_aload(localSlot0, out); out.writeByte(opc_invokevirtual); out.writeShort(cp.getMethodRef( "java/lang/Throwable", "getMessage", "()Ljava/lang/String;")); out.writeByte(opc_invokespecial); out.writeShort(cp.getMethodRef( "java/lang/NoClassDefFoundError", "", "(Ljava/lang/String;)V")); out.writeByte(opc_athrow); if (minfo.code.size() > 65535) { throw new IllegalArgumentException("code size limit exceeded"); } minfo.maxStack = 10; minfo.maxLocals = (short) (localSlot0 + 1); minfo.declaredExceptions = new short[0]; return minfo; } private void code_iload(int lvar, DataOutputStream out) throws IOException { codeLocalLoadStore(lvar, opc_iload, opc_iload_0, out); } // private void code_istore(int lvar, DataOutputStream out) // throws IOException // { // codeLocalLoadStore(lvar, opc_istore, opc_istore_0, out); // } // private void code_lstore(int lvar, DataOutputStream out) // throws IOException // { // codeLocalLoadStore(lvar, opc_lstore, opc_lstore_0, out); // } // private void code_fstore(int lvar, DataOutputStream out) // throws IOException // { // codeLocalLoadStore(lvar, opc_fstore, opc_fstore_0, out); // } // private void code_dstore(int lvar, DataOutputStream out) // throws IOException // { // codeLocalLoadStore(lvar, opc_dstore, opc_dstore_0, out); // } private void code_lload(int lvar, DataOutputStream out) throws IOException { codeLocalLoadStore(lvar, opc_lload, opc_lload_0, out); } private void code_fload(int lvar, DataOutputStream out) throws IOException { codeLocalLoadStore(lvar, opc_fload, opc_fload_0, out); } private void code_dload(int lvar, DataOutputStream out) throws IOException { codeLocalLoadStore(lvar, opc_dload, opc_dload_0, out); } private void code_aload(int lvar, DataOutputStream out) throws IOException { codeLocalLoadStore(lvar, opc_aload, opc_aload_0, out); } private void code_astore(int lvar, DataOutputStream out) throws IOException { codeLocalLoadStore(lvar, opc_astore, opc_astore_0, out); } /* * ==================== General Utility Methods ==================== */ /** * Generate code for a load or store instruction for the given local * variable. The code is written to the supplied stream. *

* "opcode" indicates the opcode form of the desired load or store * instruction that takes an explicit local variable index, and * "opcode_0" indicates the corresponding form of the instruction * with the implicit index 0. */ private void codeLocalLoadStore(int lvar, int opcode, int opcode_0, DataOutputStream out) throws IOException { assert lvar >= 0 && lvar <= 0xFFFF; if (lvar <= 3) { out.writeByte(opcode_0 + lvar); } else if (lvar <= 0xFF) { out.writeByte(opcode); out.writeByte(lvar & 0xFF); } else { /* * Use the "wide" instruction modifier for local variable * indexes that do not fit into an unsigned byte. */ out.writeByte(opc_wide); out.writeByte(opcode); out.writeShort(lvar & 0xFFFF); } } /** * Generate code for an "ldc" instruction for the given constant pool * index (the "ldc_w" instruction is used if the index does not fit * into an unsigned byte). The code is written to the supplied stream. */ private void code_ldc(int index, DataOutputStream out) throws IOException { assert index >= 0 && index <= 0xFFFF; if (index <= 0xFF) { out.writeByte(opc_ldc); out.writeByte(index & 0xFF); } else { out.writeByte(opc_ldc_w); out.writeShort(index & 0xFFFF); } } /** * Generate code to push a constant integer value on to the operand * stack, using the "iconst_", "bipush", or "sipush" instructions * depending on the size of the value. The code is written to the * supplied stream. */ private void code_ipush(int value, DataOutputStream out) throws IOException { if (value >= -1 && value <= 5) { out.writeByte(opc_iconst_0 + value); } else if (value >= Byte.MIN_VALUE && value <= Byte.MAX_VALUE) { out.writeByte(opc_bipush); out.writeByte(value & 0xFF); } else if (value >= Short.MIN_VALUE && value <= Short.MAX_VALUE) { out.writeByte(opc_sipush); out.writeShort(value & 0xFFFF); } else { throw new AssertionError(); } } /** * Generate code to invoke the Class.forName with the name of the given * class to get its Class object at runtime. The code is written to * the supplied stream. Note that the code generated by this method * may cause the checked ClassNotFoundException to be thrown. */ private void codeClassForName(Class<?> cl, DataOutputStream out) throws IOException { code_ldc(cp.getString(cl.getName()), out); out.writeByte(opc_invokestatic); out.writeShort(cp.getMethodRef( "java/lang/Class", "forName", "(Ljava/lang/String;)Ljava/lang/Class;")); } /** * An ExceptionTableEntry object holds values for the data items of * an entry in the "exception_table" item of the "Code" attribute of * "method_info" structures (see JVMS 4.7.3). */ private static class ExceptionTableEntry { public short startPc; public short endPc; public short handlerPc; public short catchType; public ExceptionTableEntry(short startPc, short endPc, short handlerPc, short catchType) { this.startPc = startPc; this.endPc = endPc; this.handlerPc = handlerPc; this.catchType = catchType; } } /** * A PrimitiveTypeInfo object contains assorted information about * a primitive type in its public fields. The struct for a particular * primitive type can be obtained using the static "get" method. */ private static class PrimitiveTypeInfo { private static final Map<Class<?>, PrimitiveTypeInfo> table = new HashMap<>(); static { add(byte.class, Byte.class); add(char.class, Character.class); add(double.class, Double.class); add(float.class, Float.class); add(int.class, Integer.class); add(long.class, Long.class); add(short.class, Short.class); add(boolean.class, Boolean.class); } /** * "base type" used in various descriptors (see JVMS section 4.3.2) */ public String baseTypeString; /** * name of corresponding wrapper class */ public String wrapperClassName; /** * method descriptor for wrapper class "valueOf" factory method */ public String wrapperValueOfDesc; /** * name of wrapper class method for retrieving primitive value */ public String unwrapMethodName; /** * descriptor of same method */ public String unwrapMethodDesc; private PrimitiveTypeInfo(Class<?> primitiveClass, Class<?> wrapperClass) { assert primitiveClass.isPrimitive(); baseTypeString = Array.newInstance(primitiveClass, 0) .getClass().getName().substring(1); wrapperClassName = dotToSlash(wrapperClass.getName()); wrapperValueOfDesc = "(" + baseTypeString + ")L" + wrapperClassName + ";"; unwrapMethodName = primitiveClass.getName() + "Value"; unwrapMethodDesc = "()" + baseTypeString; } private static void add(Class<?> primitiveClass, Class<?> wrapperClass) { table.put(primitiveClass, new PrimitiveTypeInfo(primitiveClass, wrapperClass)); } public static PrimitiveTypeInfo get(Class<?> cl) { return table.get(cl); } } /** * A ConstantPool object represents the constant pool of a class file * being generated. This representation of a constant pool is designed * specifically for use by ProxyGenerator; in particular, it assumes * that constant pool entries will not need to be resorted (for example, * by their type, as the Java compiler does), so that the final index * value can be assigned and used when an entry is first created. *

* Note that new entries cannot be created after the constant pool has * been written to a class file. To prevent such logic errors, a * ConstantPool instance can be marked "read only", so that further * attempts to add new entries will fail with a runtime exception. *

* See JVMS section 4.4 for more information about the constant pool * of a class file. */ private static class ConstantPool { /** * list of constant pool entries, in constant pool index order. *

* This list is used when writing the constant pool to a stream * and for assigning the next index value. Note that element 0 * of this list corresponds to constant pool index 1. */ private final List<ConstantPool.Entry> pool = new ArrayList<>(32); /** * maps constant pool data of all types to constant pool indexes. *

* This map is used to look up the index of an existing entry for * values of all types. */ private final Map<Object, Integer> map = new HashMap<>(16); /** * true if no new constant pool entries may be added */ private boolean readOnly = false; /** * Get or assign the index for a CONSTANT_Utf8 entry. */ public short getUtf8(String s) { if (s == null) { throw new NullPointerException(); } return getValue(s); } /** * Get or assign the index for a CONSTANT_Integer entry. */ public short getInteger(int i) { return getValue(i); } /** * Get or assign the index for a CONSTANT_Float entry. */ public short getFloat(float f) { return getValue(f); } /** * Get or assign the index for a CONSTANT_Class entry. */ public short getClass(String name) { short utf8Index = getUtf8(name); return getIndirect(new ConstantPool.IndirectEntry( CONSTANT_CLASS, utf8Index)); } /** * Get or assign the index for a CONSTANT_String entry. */ public short getString(String s) { short utf8Index = getUtf8(s); return getIndirect(new ConstantPool.IndirectEntry( CONSTANT_STRING, utf8Index)); } /** * Get or assign the index for a CONSTANT_FieldRef entry. */ public short getFieldRef(String className, String name, String descriptor) { short classIndex = getClass(className); short nameAndTypeIndex = getNameAndType(name, descriptor); return getIndirect(new ConstantPool.IndirectEntry( CONSTANT_FIELD, classIndex, nameAndTypeIndex)); } /** * Get or assign the index for a CONSTANT_MethodRef entry. */ public short getMethodRef(String className, String name, String descriptor) { short classIndex = getClass(className); short nameAndTypeIndex = getNameAndType(name, descriptor); return getIndirect(new ConstantPool.IndirectEntry( CONSTANT_METHOD, classIndex, nameAndTypeIndex)); } /** * Get or assign the index for a CONSTANT_InterfaceMethodRef entry. */ public short getInterfaceMethodRef(String className, String name, String descriptor) { short classIndex = getClass(className); short nameAndTypeIndex = getNameAndType(name, descriptor); return getIndirect(new ConstantPool.IndirectEntry( CONSTANT_INTERFACEMETHOD, classIndex, nameAndTypeIndex)); } /** * Get or assign the index for a CONSTANT_NameAndType entry. */ public short getNameAndType(String name, String descriptor) { short nameIndex = getUtf8(name); short descriptorIndex = getUtf8(descriptor); return getIndirect(new ConstantPool.IndirectEntry( CONSTANT_NAMEANDTYPE, nameIndex, descriptorIndex)); } /** * Set this ConstantPool instance to be "read only". *

* After this method has been called, further requests to get * an index for a non-existent entry will cause an InternalError * to be thrown instead of creating of the entry. */ public void setReadOnly() { readOnly = true; } /** * Write this constant pool to a stream as part of * the class file format. *

* This consists of writing the "constant_pool_count" and * "constant_pool[]" items of the "ClassFile" structure, as * described in JVMS section 4.1. */ public void write(OutputStream out) throws IOException { DataOutputStream dataOut = new DataOutputStream(out); // constant_pool_count: number of entries plus one dataOut.writeShort(pool.size() + 1); for (ConstantPool.Entry e : pool) { e.write(dataOut); } } /** * Add a new constant pool entry and return its index. */ private short addEntry(ConstantPool.Entry entry) { pool.add(entry); /* * Note that this way of determining the index of the * added entry is wrong if this pool supports * CONSTANT_Long or CONSTANT_Double entries. */ if (pool.size() >= 65535) { throw new IllegalArgumentException( "constant pool size limit exceeded"); } return (short) pool.size(); } /** * Get or assign the index for an entry of a type that contains * a direct value. The type of the given object determines the * type of the desired entry as follows: *

* java.lang.String CONSTANT_Utf8 * java.lang.Integer CONSTANT_Integer * java.lang.Float CONSTANT_Float * java.lang.Long CONSTANT_Long * java.lang.Double CONSTANT_DOUBLE */ private short getValue(Object key) { Integer index = map.get(key); if (index != null) { return index.shortValue(); } else { if (readOnly) { throw new InternalError( "late constant pool addition: " + key); } short i = addEntry(new ConstantPool.ValueEntry(key)); map.put(key, (int) i); return i; } } /** * Get or assign the index for an entry of a type that contains * references to other constant pool entries. */ private short getIndirect(ConstantPool.IndirectEntry e) { Integer index = map.get(e); if (index != null) { return index.shortValue(); } else { if (readOnly) { throw new InternalError("late constant pool addition"); } short i = addEntry(e); map.put(e, (int) i); return i; } } /** * Entry is the abstact superclass of all constant pool entry types * that can be stored in the "pool" list; its purpose is to define a * common method for writing constant pool entries to a class file. */ private abstract static class Entry { public abstract void write(DataOutputStream out) throws IOException; } /** * ValueEntry represents a constant pool entry of a type that * contains a direct value (see the comments for the "getValue" * method for a list of such types). *

* ValueEntry objects are not used as keys for their entries in the * Map "map", so no useful hashCode or equals methods are defined. */ private static class ValueEntry extends ConstantPool.Entry { private final Object value; public ValueEntry(Object value) { this.value = value; } public void write(DataOutputStream out) throws IOException { if (value instanceof String) { out.writeByte(CONSTANT_UTF8); out.writeUTF((String) value); } else if (value instanceof Integer) { out.writeByte(CONSTANT_INTEGER); out.writeInt(((Integer) value).intValue()); } else if (value instanceof Float) { out.writeByte(CONSTANT_FLOAT); out.writeFloat(((Float) value).floatValue()); } else if (value instanceof Long) { out.writeByte(CONSTANT_LONG); out.writeLong(((Long) value).longValue()); } else if (value instanceof Double) { out.writeDouble(CONSTANT_DOUBLE); out.writeDouble(((Double) value).doubleValue()); } else { throw new InternalError("bogus value entry: " + value); } } } /** * IndirectEntry represents a constant pool entry of a type that * references other constant pool entries, i.e., the following types: *

* CONSTANT_Class, CONSTANT_String, CONSTANT_Fieldref, * CONSTANT_Methodref, CONSTANT_InterfaceMethodref, and * CONSTANT_NameAndType. *

* Each of these entry types contains either one or two indexes of * other constant pool entries. *

* IndirectEntry objects are used as the keys for their entries in * the Map "map", so the hashCode and equals methods are overridden * to allow matching. */ private static class IndirectEntry extends ConstantPool.Entry { private final int tag; private final short index0; private final short index1; /** * Construct an IndirectEntry for a constant pool entry type * that contains one index of another entry. */ public IndirectEntry(int tag, short index) { this.tag = tag; this.index0 = index; this.index1 = 0; } /** * Construct an IndirectEntry for a constant pool entry type * that contains two indexes for other entries. */ public IndirectEntry(int tag, short index0, short index1) { this.tag = tag; this.index0 = index0; this.index1 = index1; } public void write(DataOutputStream out) throws IOException { out.writeByte(tag); out.writeShort(index0); /* * If this entry type contains two indexes, write * out the second, too. */ if (tag == CONSTANT_FIELD || tag == CONSTANT_METHOD || tag == CONSTANT_INTERFACEMETHOD || tag == CONSTANT_NAMEANDTYPE) { out.writeShort(index1); } } public int hashCode() { return tag + index0 + index1; } public boolean equals(Object obj) { if (obj instanceof ConstantPool.IndirectEntry) { ConstantPool.IndirectEntry other = (ConstantPool.IndirectEntry) obj; return tag == other.tag && index0 == other.index0 && index1 == other.index1; } return false; } } } /** * A FieldInfo object contains information about a particular field * in the class being generated. The class mirrors the data items of * the "field_info" structure of the class file format (see JVMS 4.5). */ private class FieldInfo { public int accessFlags; public String name; public String descriptor; public FieldInfo(String name, String descriptor, int accessFlags) { this.name = name; this.descriptor = descriptor; this.accessFlags = accessFlags; /* * Make sure that constant pool indexes are reserved for the * following items before starting to write the final class file. */ cp.getUtf8(name); cp.getUtf8(descriptor); } public void write(DataOutputStream out) throws IOException { /* * Write all the items of the "field_info" structure. * See JVMS section 4.5. */ // u2 access_flags; out.writeShort(accessFlags); // u2 name_index; out.writeShort(cp.getUtf8(name)); // u2 descriptor_index; out.writeShort(cp.getUtf8(descriptor)); // u2 attributes_count; out.writeShort(0); // (no field_info attributes for proxy classes) } } /** * A MethodInfo object contains information about a particular method * in the class being generated. This class mirrors the data items of * the "method_info" structure of the class file format (see JVMS 4.6). */ private class MethodInfo { public int accessFlags; public String name; public String descriptor; public short maxStack; public short maxLocals; public ByteArrayOutputStream code = new ByteArrayOutputStream(); public List<ExceptionTableEntry> exceptionTable = new ArrayList<ExceptionTableEntry>(); public short[] declaredExceptions; public MethodInfo(String name, String descriptor, int accessFlags) { this.name = name; this.descriptor = descriptor; this.accessFlags = accessFlags; /* * Make sure that constant pool indexes are reserved for the * following items before starting to write the final class file. */ cp.getUtf8(name); cp.getUtf8(descriptor); cp.getUtf8("Code"); cp.getUtf8("Exceptions"); } public void write(DataOutputStream out) throws IOException { /* * Write all the items of the "method_info" structure. * See JVMS section 4.6. */ // u2 access_flags; out.writeShort(accessFlags); // u2 name_index; out.writeShort(cp.getUtf8(name)); // u2 descriptor_index; out.writeShort(cp.getUtf8(descriptor)); // u2 attributes_count; out.writeShort(2); // (two method_info attributes:) // Write "Code" attribute. See JVMS section 4.7.3. // u2 attribute_name_index; out.writeShort(cp.getUtf8("Code")); // u4 attribute_length; out.writeInt(12 + code.size() + 8 * exceptionTable.size()); // u2 max_stack; out.writeShort(maxStack); // u2 max_locals; out.writeShort(maxLocals); // u2 code_length; out.writeInt(code.size()); // u1 code[code_length]; code.writeTo(out); // u2 exception_table_length; out.writeShort(exceptionTable.size()); for (ExceptionTableEntry e : exceptionTable) { // u2 start_pc; out.writeShort(e.startPc); // u2 end_pc; out.writeShort(e.endPc); // u2 handler_pc; out.writeShort(e.handlerPc); // u2 catch_type; out.writeShort(e.catchType); } // u2 attributes_count; out.writeShort(0); // write "Exceptions" attribute. See JVMS section 4.7.4. // u2 attribute_name_index; out.writeShort(cp.getUtf8("Exceptions")); // u4 attributes_length; out.writeInt(2 + 2 * declaredExceptions.length); // u2 number_of_exceptions; out.writeShort(declaredExceptions.length); // u2 exception_index_table[number_of_exceptions]; for (short value : declaredExceptions) { out.writeShort(value); } } } /** * A ProxyMethod object represents a proxy method in the proxy class * being generated: a method whose implementation will encode and * dispatch invocations to the proxy instance's invocation handler. */ private class ProxyMethod { public String methodName; public Class<?>[] parameterTypes; public Class<?> returnType; public Class<?>[] exceptionTypes; public Class<?> fromClass; public String methodFieldName; private ProxyMethod(String methodName, Class<?>[] parameterTypes, Class<?> returnType, Class<?>[] exceptionTypes, Class<?> fromClass) { this.methodName = methodName; this.parameterTypes = parameterTypes; this.returnType = returnType; this.exceptionTypes = exceptionTypes; this.fromClass = fromClass; this.methodFieldName = "m" + proxyMethodCount++; } /** * Return a MethodInfo object for this method, including generating * the code and exception table entry. */ private MethodInfo generateMethod() throws IOException { String desc = getMethodDescriptor(parameterTypes, returnType); MethodInfo minfo = new MethodInfo(methodName, desc, ACC_PUBLIC | ACC_FINAL); int[] parameterSlot = new int[parameterTypes.length]; int nextSlot = 1; for (int i = 0; i < parameterSlot.length; i++) { parameterSlot[i] = nextSlot; nextSlot += getWordsPerType(parameterTypes[i]); } int localSlot0 = nextSlot; short pc, tryBegin = 0, tryEnd; DataOutputStream out = new DataOutputStream(minfo.code); code_aload(0, out); out.writeByte(opc_getfield); out.writeShort(cp.getFieldRef( superclassName, handlerFieldName, "Ljava/lang/reflect/InvocationHandler;")); code_aload(0, out); out.writeByte(opc_getstatic); out.writeShort(cp.getFieldRef( dotToSlash(className), methodFieldName, "Ljava/lang/reflect/Method;")); if (parameterTypes.length > 0) { code_ipush(parameterTypes.length, out); out.writeByte(opc_anewarray); out.writeShort(cp.getClass("java/lang/Object")); for (int i = 0; i < parameterTypes.length; i++) { out.writeByte(opc_dup); code_ipush(i, out); codeWrapArgument(parameterTypes[i], parameterSlot[i], out); out.writeByte(opc_aastore); } } else { out.writeByte(opc_aconst_null); } out.writeByte(opc_invokeinterface); out.writeShort(cp.getInterfaceMethodRef( "java/lang/reflect/InvocationHandler", "invoke", "(Ljava/lang/Object;Ljava/lang/reflect/Method;" + "[Ljava/lang/Object;)Ljava/lang/Object;")); out.writeByte(4); out.writeByte(0); if (returnType == void.class) { out.writeByte(opc_pop); out.writeByte(opc_return); } else { codeUnwrapReturnValue(returnType, out); } tryEnd = pc = (short) minfo.code.size(); List<Class<?>> catchList = computeUniqueCatchList(exceptionTypes); if (catchList.size() > 0) { for (Class<?> ex : catchList) { minfo.exceptionTable.add(new ExceptionTableEntry( tryBegin, tryEnd, pc, cp.getClass(dotToSlash(ex.getName())))); } out.writeByte(opc_athrow); pc = (short) minfo.code.size(); minfo.exceptionTable.add(new ExceptionTableEntry( tryBegin, tryEnd, pc, cp.getClass("java/lang/Throwable"))); code_astore(localSlot0, out); out.writeByte(opc_new); out.writeShort(cp.getClass( "java/lang/reflect/UndeclaredThrowableException")); out.writeByte(opc_dup); code_aload(localSlot0, out); out.writeByte(opc_invokespecial); out.writeShort(cp.getMethodRef( "java/lang/reflect/UndeclaredThrowableException", "", "(Ljava/lang/Throwable;)V")); out.writeByte(opc_athrow); } if (minfo.code.size() > 65535) { throw new IllegalArgumentException("code size limit exceeded"); } minfo.maxStack = 10; minfo.maxLocals = (short) (localSlot0 + 1); minfo.declaredExceptions = new short[exceptionTypes.length]; for (int i = 0; i < exceptionTypes.length; i++) { minfo.declaredExceptions[i] = cp.getClass( dotToSlash(exceptionTypes[i].getName())); } return minfo; } /** * Generate code for wrapping an argument of the given type * whose value can be found at the specified local variable * index, in order for it to be passed (as an Object) to the * invocation handler's "invoke" method. The code is written * to the supplied stream. */ private void codeWrapArgument(Class<?> type, int slot, DataOutputStream out) throws IOException { if (type.isPrimitive()) { PrimitiveTypeInfo prim = PrimitiveTypeInfo.get(type); if (type == int.class || type == boolean.class || type == byte.class || type == char.class || type == short.class) { code_iload(slot, out); } else if (type == long.class) { code_lload(slot, out); } else if (type == float.class) { code_fload(slot, out); } else if (type == double.class) { code_dload(slot, out); } else { throw new AssertionError(); } out.writeByte(opc_invokestatic); out.writeShort(cp.getMethodRef( prim.wrapperClassName, "valueOf", prim.wrapperValueOfDesc)); } else { code_aload(slot, out); } } /** * Generate code for unwrapping a return value of the given * type from the invocation handler's "invoke" method (as type * Object) to its correct type. The code is written to the * supplied stream. */ private void codeUnwrapReturnValue(Class<?> type, DataOutputStream out) throws IOException { if (type.isPrimitive()) { PrimitiveTypeInfo prim = PrimitiveTypeInfo.get(type); out.writeByte(opc_checkcast); out.writeShort(cp.getClass(prim.wrapperClassName)); out.writeByte(opc_invokevirtual); out.writeShort(cp.getMethodRef( prim.wrapperClassName, prim.unwrapMethodName, prim.unwrapMethodDesc)); if (type == int.class || type == boolean.class || type == byte.class || type == char.class || type == short.class) { out.writeByte(opc_ireturn); } else if (type == long.class) { out.writeByte(opc_lreturn); } else if (type == float.class) { out.writeByte(opc_freturn); } else if (type == double.class) { out.writeByte(opc_dreturn); } else { throw new AssertionError(); } } else { out.writeByte(opc_checkcast); out.writeShort(cp.getClass(dotToSlash(type.getName()))); out.writeByte(opc_areturn); } } /** * Generate code for initializing the static field that stores * the Method object for this proxy method. The code is written * to the supplied stream. */ private void codeFieldInitialization(DataOutputStream out) throws IOException { codeClassForName(fromClass, out); code_ldc(cp.getString(methodName), out); code_ipush(parameterTypes.length, out); out.writeByte(opc_anewarray); out.writeShort(cp.getClass("java/lang/Class")); for (int i = 0; i < parameterTypes.length; i++) { out.writeByte(opc_dup); code_ipush(i, out); if (parameterTypes[i].isPrimitive()) { PrimitiveTypeInfo prim = PrimitiveTypeInfo.get(parameterTypes[i]); out.writeByte(opc_getstatic); out.writeShort(cp.getFieldRef( prim.wrapperClassName, "TYPE", "Ljava/lang/Class;")); } else { codeClassForName(parameterTypes[i], out); } out.writeByte(opc_aastore); } out.writeByte(opc_invokevirtual); out.writeShort(cp.getMethodRef( "java/lang/Class", "getMethod", "(Ljava/lang/String;[Ljava/lang/Class;)" + "Ljava/lang/reflect/Method;")); out.writeByte(opc_putstatic); out.writeShort(cp.getFieldRef( dotToSlash(className), methodFieldName, "Ljava/lang/reflect/Method;")); } } }

生成的字节码

//
// Source code recreated from a .class file by IntelliJ IDEA
// (powered by FernFlower decompiler)
//

import A002动态代理.IPerson;
import java.lang.reflect.InvocationHandler;
import java.lang.reflect.Method;
import java.lang.reflect.Proxy;
import java.lang.reflect.UndeclaredThrowableException;

public final class RProxy0 extends Proxy implements IPerson {
    private static Method m1;
    private static Method m3;
    private static Method m2;
    private static Method m0;

	//protected Proxy(InvocationHandler h) {
    //    Objects.requireNonNull(h);
    //    this.h = h;
    //}

    public RProxy0(InvocationHandler var1) throws  {
        super(var1);
    }

    public final boolean equals(Object var1) throws  {
        try {
            return (Boolean)super.h.invoke(this, m1, new Object[]{var1});
        } catch (RuntimeException | Error var3) {
            throw var3;
        } catch (Throwable var4) {
            throw new UndeclaredThrowableException(var4);
        }
    }

    public final String stduy(String var1) throws  {
        try {
            return (String)super.h.invoke(this, m3, new Object[]{var1});
        } catch (RuntimeException | Error var3) {
            throw var3;
        } catch (Throwable var4) {
            throw new UndeclaredThrowableException(var4);
        }
    }

    public final String toString() throws  {
        try {
            return (String)super.h.invoke(this, m2, (Object[])null);
        } catch (RuntimeException | Error var2) {
            throw var2;
        } catch (Throwable var3) {
            throw new UndeclaredThrowableException(var3);
        }
    }

    public final int hashCode() throws  {
        try {
            return (Integer)super.h.invoke(this, m0, (Object[])null);
        } catch (RuntimeException | Error var2) {
            throw var2;
        } catch (Throwable var3) {
            throw new UndeclaredThrowableException(var3);
        }
    }

    static {
        try {
            m1 = Class.forName("java.lang.Object").getMethod("equals", Class.forName("java.lang.Object"));
            m3 = Class.forName("A002动态代理.IPerson").getMethod("stduy", Class.forName("java.lang.String"));
            m2 = Class.forName("java.lang.Object").getMethod("toString");
            m0 = Class.forName("java.lang.Object").getMethod("hashCode");
        } catch (NoSuchMethodException var2) {
            throw new NoSuchMethodError(var2.getMessage());
        } catch (ClassNotFoundException var3) {
            throw new NoClassDefFoundError(var3.getMessage());
        }
    }
}

资料

jdk动态代理&cglb动态代理到底生成了啥(一)
动态代理类
动态代理
JAVA创建一个私有域_【package-private】包私有类的食用姿势

你可能感兴趣的:(java,python,开发语言)