k路归并 O(nlogk)

题目

假定有k个有序数组,每个数组中含有n个元素,您的任务是将它们合并为单独的一个有序数组,该数组共有kn个元素。设计和实现 一个有效的分治算法解决k-路合并操作问题,并分析时间复杂度。

算法思想

采用分治法归并排序,归并两个有序数组时间复杂度为O(n),将K个有序数组分治归并时间复杂度为O(logk),算法整体时间复杂度为O(nlogk),程序里用到了vector向量容器。

#include 
#include 
using namespace std;
vector mergeTowArrays(vectorA,vectorB)
{
    vectortemp;
    temp.resize(A.size() + B.size());
    int index = 0, j = 0, i = 0;
    while (i < A.size() && j < B.size())
    {
        if (A[i] < B[j])
            temp[index++] = A[i++];
        else
            temp[index++] = B[j++];
    }
        while (i < A.size())
            temp[index++] = A[i++];
        while (j < B.size())
            temp[index++] = B[j++];
        return temp;
}
vector kMergeSort(vector>A, int start, int end)
{
    if (start >= end)
        return A[start];
    int mid = start + (end - start) / 2;
    vectorLeft = kMergeSort(A, start, mid);
    vectorRight = kMergeSort(A, mid + 1, end);
    return mergeTowArrays(Left, Right);
}
vector mergeSortArrays(vector >A)
{
    vectortemp;
    if (A.empty() || A.size() == 0 || A[0].size() == 0)
        return temp;
    temp = kMergeSort(A, 0, A.size() - 1);
    return temp;
}
int main(void)
{
    int k,n;
    cin >> k >> n;
    vector>A(k);
    for (int i = 0; i < k; i++)
    {
        A[i].resize(n);
    }
    for (int i = 0; i < A.size(); i++)
    {
        for (int j = 0; j < A[0].size(); j++)
            cin >> A[i][j];
    }
    vectorresult;
    result = mergeSortArrays(A);
    for (int i = 0; i < result.size(); i++)
    {
        cout << result[i] << " ";
    }
    cout << endl;
    system("pause");
    return 0;
}

你可能感兴趣的:(k路归并 O(nlogk))