图的邻接矩阵与邻接表

目录

一、图的概念

二、邻接矩阵

2.1 邻接矩阵存储

2.2 邻接矩阵结构

2.3 构造邻接矩阵

2.4 边的添加

三、邻接表

3.1 邻接矩阵存储

3.2 邻接表结构

3.3 构造邻接表

3.4 边的添加

三、 图的遍历


一、图的相关概念

图是由顶点集合顶点间的关系组成的一种数据结构:G=(V,E)其中:

  • 顶点和边:图中结点称为顶点,第i个顶点记作vi。两个顶点vi和vj相关联称作顶点vi和顶点vj之间有一条边,图中的第k条边基座ek,ek=(vi,vj)或
  • 顶点集合V={x|x某个数据对象集}是个有穷非空集合;
  • 边的集合E={(x,y)|x,y属于V}或者E={|x,y属于V && Path(x,y)}是顶点间关系的有穷集合.
  • (x,y)表示x到y的一条双向通路,即(x,y)是无方向的;Path(x,y)表示从x到y的一条单向通路,即Path(x,y)是有方向的。

有向图与无向图:        

        在有向图中,顶点对是有序的,顶点对称为顶点x到顶点y的一条边(弧),是两条不同的边,比如下图G3和G4为有向图。在无向图中,顶点对(x,y)是无序的,顶点对(x,y)称为顶点x和顶点相关联的一条边,这条边没有特定的方向,(x,y)和(y,x)是同一条边,比如下图G1和G2就是无向图。注意:无向边(x,y)等于有向边

图的邻接矩阵与邻接表_第1张图片

完全图:

        在有 n 个顶点的无向图中,若有n*(n-1)/2条边,即任意两个顶点之间有且仅有一条边,则此图称为无向完全图,比如上图中的G1;

        在有 n 个顶点的有向图中,若有n*(n-1)条边,即任意两个顶点之间有且仅有方向相反的边,则称此图为有向完全图,比如上图的G4.

邻接顶点:

        在无向图G中,若(u,v)是E(G)中的一条边,则称为u和v互为邻接顶点,并称为边(u,v)依附于顶点u和v。在有向图G中,若是E(G)中的一条边,则称顶点u邻接到v,顶点v邻接自顶点u,并称边与顶点u和顶点v相关联。

顶点的度:

        顶点v的度是指与他相关联的边的条数,记作deg(V)。在有向图中,顶点的度等于该顶点的出度和入读之和,其中顶点v的入度就是以v为终点的有向边的条数,基座indev(V);顶点v的出度是以v为起始点的有向边的条数,记作outdev(V)。因此:dev(V)=inndev(V)+outdev(V)。注意:对于无向图,顶点的度等于该顶点的入度和出度,即dev(V)=indev(V)+outdev(V)。

路径与路径长度:

        在图G=(V,E)中,若从顶点vi出发有一组边使其可到达顶点vj,则称顶点vi到顶点vj的顶点序列为从顶点vi到顶点vj的路径。

路径长度:

        对于不带权的图,一条路径的路径长度是指该路径上的边的条数;对于带权的图,一条路径的路径长度是指该路径上各个边权值的总和。

图的邻接矩阵与邻接表_第2张图片

简单路径与回路:

        若路径上各顶点v1、v2、v3……vn均不重复,则称这样的路径为简单路径。

        若路径上第一个顶点v1和最后一个顶点vn重合,则称这样的路径为回路或者环。

图的邻接矩阵与邻接表_第3张图片

子图:

        设图G={V,E}和G1={V1,E1},若v1属于V且E1属于E,则称G1是G的子图。

图的邻接矩阵与邻接表_第4张图片

连通图与强连通图:        

        在无向图中,若从顶点v1到顶点v2有路径,则称顶点v1与v2是连通的。如果途中任一对顶点是连通的,则称此图为连通图。

        在有向图中,若在每一对顶点vi和vj之间都存在一条从vi到vj的路径,也存在一条从vj到vi的路径,则称此图是强连通图。

图的邻接矩阵与邻接表_第5张图片

二、邻接矩阵

2.1 如何存储

图中既有节点,又有边(节点与节点之间的关系),因此,在图的存储中,只需要保存:节点和边的关系即可。节点保存比较简单,只需要一段连续空间即可,那边关系该如何保存呢?

因为节点与节点之间的关系就是连通与否,即为0或者1,因此邻接矩阵(二维数组)即是:先用一个数组将顶点保存,然后采用矩阵来表示节点与节点之间的关系。

以下是使用矩阵的方式保存无向图、有向图的边:

图的邻接矩阵与邻接表_第6张图片

注意:

  1. 无向图的邻接矩阵是对称的,第i行(列)元素之和,就是顶点 i 的度。有向图的邻接矩阵则不一定是对称的,第 i 行(列)元素之后就是顶点 i 的出(入)度。
  2. 如果边带有权值,并且二个节点之间是连通的,上图的边的关系就用权值代替,如果两个顶点不同,则使用无穷大代替。图的邻接矩阵与邻接表_第7张图片
  3. 邻接矩阵的优点是能够快速知道两个顶点是否连通。
  4. 邻接矩阵的缺陷是如果顶点比较多,边比较少时,矩阵中存储大量的0成为系数矩阵,比较浪费空间,并且要求两个顶点之间的路径不是很好求。而且不适合查找一个顶点连接的所有顶点。

2.2 邻接矩阵结构

我们使用邻接矩阵来保存图中的所有数据,我们要使用三种结构来实现:

  1. 保存图中所有顶点的数组。
  2. 记录图中顶点与数组下标的映射关系。
  3. 矩阵(二维数组)保存图中的边数据集合。

那我们的结构就要进行以下这种方式的定义:

图的邻接矩阵与邻接表_第8张图片

再介绍一下模板参数:

V:表示顶点的数据类型,一般为char型(A、B、C)。

W:表示边上权值的数据类型,一般为int型。

W MAX_W:非类型模板参数,表示当两顶点间不连通时的权值,默认为INT_MAX。

Direction:默认为false,表示无向图,传入true表示有向图。

2.3 构造邻接矩阵

传入顶点数组,我们便可以构造图。第一步将顶点放入顶点数组中;第二步就是开辟矩阵。

//传入顶点数组进行初始化
Graph(const V* a, size_t n)
{
	//step1: 将顶点存入顶点数组中
	_vertexs.reserve(n);
	for (size_t i = 0; i < n; ++i)
	{
		_vertexs.push_back(a[i]);
		_indexMap[a[i]] = i;
	}
	//step2:创建矩阵
	_matrix.resize(n);
	for (size_t i = 0; i < _matrix.size(); ++i)
	{
		_matrix[i].resize(n, MAX_W);
	}
}

2.4 边的添加

首先添加边我们要知道顶点对应的矩阵下标是多少,我们已经使用Map存放了对应的映射关系,接下来我们可以将其封装成一个函数获取对应的矩阵下标。

size_t GetVertexIndex(const V& v)
{
	auto it = _indexMap.find(v);
	if (it != _indexMap.end())
	{
		return it->second;
	}
	else
	{
		throw invalid_argument("顶点不存在");
		return -1;
	}
}

然后我们获取顶点的下标,在矩阵中添加边的信息。

接下来就要判断,如果是有向图,那只用添加一条边即可,如果是无向图,那对称位置也要进行设置。

void AddEdge(const V& src, const V& dst, const W& w)
{
	size_t srci = GetVertexIndex(src);
	size_t dsti = GetVertexIndex(dst);
	_matrix[srci][dsti] = w;
	if (!Direction)
		_matrix[dsti][srci] = w;
}

有了添加边我们就可以简单的测试一下, 接下来写的一个简易的Print函数:

void Print()
{
	//打印顶点和下标的映射关系
	for (size_t i = 0; i < _vertexs.size(); i++)
	{
		cout << "[" << i << "]" << "->" << _vertexs[i] << endl;
	}
	cout << endl << "  ";

	for (auto i : _vertexs)
		cout << i << " ";
	cout << endl;
	//打印矩阵
	for (size_t i = 0; i < _matrix.size(); ++i)
	{
		cout << _vertexs[i] << " ";
		for (size_t j = 0; j < _matrix[i].size(); ++j)
		{
			if (_matrix[i][j] == INT_MAX) cout << "#" << " ";
			else cout << _matrix[i][j] << " ";
		}
		cout << endl;
	}
}

测试代码与测试结果:

void testgraph2()
{
	matrix::Graph g("ABCD", 4);
	g.AddEdge('A', 'B', 1);
	g.AddEdge('A', 'D', 4);
	g.AddEdge('B', 'D', 2);
	g.AddEdge('B', 'C', 9);
	g.AddEdge('C', 'D', 8);
	g.AddEdge('C', 'B', 5);
	g.AddEdge('C', 'A', 3);
	g.AddEdge('D', 'B', 6);
	g.Print();
}

图的邻接矩阵与邻接表_第9张图片

三、邻接表

邻接表:使用数组表示顶点的集合,使用链表表示边的关系

3.1 如何存储

1.无向图邻接表存储

图的邻接矩阵与邻接表_第10张图片

注意:

        无向图中同一条边在邻接表中出现了两次。如果想知道顶点vi的度,只需要知道顶点vi边链表结合中节点的数据即可。

2.有向图邻接表存储

图的邻接矩阵与邻接表_第11张图片

通常我们都是实现的出边表

3.2 邻接表结构

因为邻接表是类似于指针数组,数组中存放的是节点的指针,我们先来定义各个节点的结构吧。

邻接表中的各个节点其实就是表示图中的边,这里我们实现的出边表,所以我们的节点需要保存:1.目标点的下标;2.边的权值;3.下一个节点的指针

template
struct Edge
{
    //传入目标点
	Edge(const int dsti, const W& w)
		:_dsti(dsti), _w(w), _next(nullptr)
	{}

	int _dsti;           //目标点的下标
	W _w;              //边的权值
	Edge* _next; //下一个节点的指针
};

接下来我们图的邻接表的结构于邻接矩阵的结构非常相似了,只不过是将矩阵换成了邻接表:

template
class Graph
{
	typedef Edge Edge;
private:
	vector _vertexs;      //顶点集合
	map _indexMap;   //顶点映射下标
	vector _tables;   //邻接表
};

3.3 构造邻接表

分为两步,第一步是将顶点存入顶点数组中;第二步就是开辟邻接表的空间,让其存放边节点。

//使用顶点集合进行构造
Graph(const V* a, size_t n)
{
	//step1: 将顶点存入顶点数组中
	_vertexs.reserve(n);
	for (size_t i = 0; i < n; i++)
	{
		_vertexs.push_back(a[i]);
		_indexMap[a[i]] = i;
	}

	//step2:开辟邻接表的空间
	_tables.resize(n, nullptr);
}

3.4 边的添加

首先我们要new一个节点,使用头插法将该节点插入到指针数组中。

如果是无向图,那还要在目标点也添加一条对应的边。

void AddEdge(const V& src, const V& dst, const W& w)
{
	size_t srci = GetVertexIndex(src);
	size_t dsti = GetVertexIndex(dst);

	// 1->2
	Edge* eg = new Edge(dsti, w);
	eg->_next = _tables[srci];
	_tables[srci] = eg;

	// 2->1
	if (Direction == false)
	{
		Edge* eg = new Edge(srci, w);
		eg->_next = _tables[dsti];
		_tables[dsti] = eg;
	}
}

实现了图的构造和边的添加,接下来我们实现一个打印函数就可以进行测试了。代码与结果如下:

void Print()
{
	// 顶点
	for (size_t i = 0; i < _vertexs.size(); ++i)
	{
		cout << "[" << i << "]" << "->" << _vertexs[i] << endl;
	}
	cout << endl;

	for (size_t i = 0; i < _tables.size(); ++i)
	{
		cout << _vertexs[i] << "[" << i << "]->";
		Edge* cur = _tables[i];
		while (cur)
		{
			cout << "[" << _vertexs[cur->_dsti] << ":" << cur->_dsti << ":" << cur->_w << "]->";
			cur = cur->_next;
		}
		cout << "nullptr" << endl;
	}
}

图的邻接矩阵与邻接表_第12张图片

三、源代码与测试用例

邻接矩阵:

namespace matrix
{
	//Direction表示是否有向,一般无向居多;MAX_W表示无权的边,赋值为int_max
	template
	class Graph
	{
	public:
		//传入顶点数组进行初始化
		Graph(const V* a, size_t n)
		{
			//step1: 将顶点存入顶点数组中
			_vertexs.reserve(n);
			for (size_t i = 0; i < n; ++i)
			{
				_vertexs.push_back(a[i]);
				_indexMap[a[i]] = i;
			}
			//step2:创建矩阵
			_matrix.resize(n);
			for (size_t i = 0; i < _matrix.size(); ++i)
			{
				_matrix[i].resize(n, MAX_W);
			}
		}

		size_t GetVertexIndex(const V& v)
		{
			auto it = _indexMap.find(v);
			if (it != _indexMap.end())
			{
				return it->second;
			}
			else
			{
				throw invalid_argument("顶点不存在");
				return -1;
			}
		}

		void AddEdge(const V& src, const V& dst, const W& w)
		{
			size_t srci = GetVertexIndex(src);
			size_t dsti = GetVertexIndex(dst);
			_matrix[srci][dsti] = w;
			if (!Direction)
				_matrix[dsti][srci] = w;
		}
		void Print()
		{
			//打印顶点和下标的映射关系
			for (size_t i = 0; i < _vertexs.size(); i++)
			{
				cout << "[" << i << "]" << "->" << _vertexs[i] << endl;
			}
			cout << endl << "  ";

			for (auto i : _vertexs)
				cout << i << " ";
			cout << endl;
			//打印矩阵
			for (size_t i = 0; i < _matrix.size(); ++i)
			{
				cout << _vertexs[i] << " ";
				for (size_t j = 0; j < _matrix[i].size(); ++j)
				{
					if (_matrix[i][j] == INT_MAX) cout << "#" << " ";
					else cout << _matrix[i][j] << " ";
				}
				cout << endl;
			}
		}
	private:
		vector _vertexs;         //存放图中的所有顶点
		map _indexMap;      //顶点与数组下标的映射
		vector> _matrix;  //保存边集合的矩阵
	};
}

邻接表:

//邻接表
namespace link_table
{
	//结点
	template
	struct Edge
	{
		//传入目标点
		Edge(const int dsti, const W& w)
			:_dsti(dsti), _w(w), _next(nullptr)
		{}

		int _dsti;           //目标点的下标
		W _w;              //边的权值
		Edge* _next; //下一个节点的指针
	};

	template
	class Graph
	{
		typedef Edge Edge;
	public:
		//使用顶点集合进行构造
		Graph(const V* a, size_t n)
		{
			//step1: 将顶点存入顶点数组中
			_vertexs.reserve(n);
			for (size_t i = 0; i < n; i++)
			{
				_vertexs.push_back(a[i]);
				_indexMap[a[i]] = i;
			}

			//step2:开辟邻接表的空间
			_tables.resize(n, nullptr);
		}

		size_t GetVertexIndex(const V& v)
		{
			auto it = _indexMap.find(v);
			if (it != _indexMap.end())
			{
				return it->second;
			}
			else
			{
				throw invalid_argument("顶点不存在");
				return -1;
			}
		}

		void AddEdge(const V& src, const V& dst, const W& w)
		{
			//如果是无向图,那A的边集合处要进行添加,即添加两条边
			//如果是有向图,只用添加src到dst的边即可。

			size_t srci = GetVertexIndex(src);
			size_t dsti = GetVertexIndex(dst);
			//构造节点
			Edge* eg = new Edge(dsti, w);
			//头插节点---效率高
			eg->_next = _tables[srci];
			_tables[srci] = eg;

			//如果是无向图
			if (!Direction)
			{
				Edge* eg = new Edge(srci, w);
				eg->_next = _tables[dsti];
				_tables[dsti] = eg;
			}
		}
		void Print()
		{
			// 顶点
			for (size_t i = 0; i < _vertexs.size(); ++i)
			{
				cout << "[" << i << "]" << "->" << _vertexs[i] << endl;
			}
			cout << endl;

			for (size_t i = 0; i < _tables.size(); ++i)
			{
				cout << _vertexs[i] << "[" << i << "]->";
				Edge* cur = _tables[i];
				while (cur)
				{
					cout << "[" << _vertexs[cur->_dsti] << ":" << cur->_dsti << ":" << cur->_w << "]->";
					cur = cur->_next;
				}
				cout << "nullptr" << endl;
			}
		}
	private:
		vector _vertexs;      //顶点集合
		map _indexMap;   //顶点映射下标
		vector _tables;   //邻接表
	};
}

测试用例:

void testgraph1()
{
	matrix::Graph g("0123", 4);
	g.AddEdge('0', '1', 1);
	g.AddEdge('0', '3', 4);
	g.AddEdge('1', '3', 2);
	g.AddEdge('1', '2', 9);
	g.AddEdge('2', '3', 8);
	g.AddEdge('2', '1', 5);
	g.AddEdge('2', '0', 3);
	g.AddEdge('3', '2', 6);
	g.Print();
}

void testgraph2()
{
	matrix::Graph g("ABCD", 4);
	g.AddEdge('A', 'B', 1);
	g.AddEdge('A', 'D', 4);
	g.AddEdge('B', 'D', 2);
	g.AddEdge('B', 'C', 9);
	g.AddEdge('C', 'D', 8);
	g.AddEdge('C', 'B', 5);
	g.AddEdge('C', 'A', 3);
	g.AddEdge('D', 'B', 6);
	g.Print();
}

void TestGraph3()
{
	string a[] = { "张三", "李四", "王五", "赵六" };
	link_table::Graph g1(a, 4);

	g1.AddEdge("张三", "李四", 100);
	g1.AddEdge("张三", "王五", 200);
	g1.AddEdge("王五", "赵六", 30);
	g1.Print();
}
void testgraph4()
{
	link_table::Graph g("ABCD", 4);
	g.AddEdge('A', 'B', 1);
	g.AddEdge('A', 'D', 4);
	g.AddEdge('B', 'D', 2);
	g.AddEdge('B', 'C', 9);
	g.AddEdge('C', 'D', 8);
	g.AddEdge('C', 'B', 5);
	g.AddEdge('C', 'A', 3);
	g.AddEdge('D', 'B', 6);
	g.Print();
}

你可能感兴趣的:(C++,数据结构,数据结构,图)