19 Spark Streaming中空RDD的处理

在Spark Streaming中,job不断的产生,有时候会产生一些空RDD,而基于这些空RDD生成的job大多数情况下是没必要提交到集群执行的。执行没有结果的job,就是浪费计算资源,数据库连接资源,产生空文件等。
这里介绍两种判断空RDD的方式,第一种是以Receiver接收数据时产生的BlockRDD或WriteAheadLogBackedBlockRDD,所有以Receiver方式接收数据都会产生BlockRDD或WriteAheadLogBackedBlockRDD,第二种是以Direct Kafka方式接收数据产生的KafkaRDD。

  1. 第一种情况,以Receiver方式接收数据,计算wordCount为例来说明空RDD如何处理,代码如下
object ReceiverWordCount {

  def main(args: Array[String]) {

    val conf = new SparkConf().setAppName("ReceiverWordCount").setMaster("local[3]")
    conf.set("spark.testing.memory", "2147480000")
    val ssc = new StreamingContext(conf, Seconds(10))

    val lines = ssc.socketTextStream("10.10.63.106", 8589, StorageLevel.MEMORY_AND_DISK_SER)

    val words= lines.flatMap(_.split(""))
    val wordCounts= words.map(x => (x,1)).reduceByKey((num1:Int,num2:Int)=>num1+num2,2)
    wordCounts.foreachRDD(rdd=>{
     if(rdd.dependencies(0).rdd.partitions.isEmpty){
        println(">>>RDD:Empty")
      }else{
        rdd.foreach(x=>println(x._1+"\t"+x._2))
      }
    })
    ssc.start()
    ssc.awaitTermination()
  }
}

这里为了方便,在foreachRDD中使用了rdd.foreach(x=>println(x._1+"\t"+x._2))来打印结果,只是简单的效果演示,生产环境一般会输出到外部存储系统中,例如mysql、redis 、hdfs等
这里总结了三种判断空RDD方式的,我们来看一下这三种方式有什么不同:
第一种:if(rdd.count==0)
RDD的count操作会触发一个action,提交一个job,这种方式不是我们想要的
第二种:if(rdd.partitions.isEmpty)
判断rdd的partitions是否为空,那我们需要看一下这里的rdd是怎么得来的,经过上面WordCount中的一系列transformation操作后,最后一个reduceByKey操作产生的ShuffledRDD 。经过reduceByKey操作后,分区数量会受到默认分区数或用户指定的分区数的影响,和最初BlockRDD的分区数不一样,因为ShuffledRDD的分区数不可能为0,所以if(rdd.partitions.isEmpty)无效。if(rdd.partitions.isEmpty)在什么有效呢?只有在当前rdd和BlockRDD在同一个stage时才会有效,因为分区数没有变化
第三种:if(rdd.dependencies(0).rdd.partitions.isEmpty)
根据RDD的依赖关系,从后向前寻找BlockRDD,因为在BlockRDD生成的时候分区数受blockInfos(Receiver接收数据的元数据信息)的影响,代码如下

private[streaming] def createBlockRDD(time: Time, blockInfos: Seq[ReceivedBlockInfo]): RDD[T] = {

    if (blockInfos.nonEmpty) {
      val blockIds = blockInfos.map { _.blockId.asInstanceOf[BlockId] }.toArray

      // Are WAL record handles present with all the blocks
      val areWALRecordHandlesPresent = blockInfos.forall { _.walRecordHandleOption.nonEmpty }

      if (areWALRecordHandlesPresent) {
        // If all the blocks have WAL record handle, then create a WALBackedBlockRDD
        val isBlockIdValid = blockInfos.map { _.isBlockIdValid() }.toArray
        val walRecordHandles = blockInfos.map { _.walRecordHandleOption.get }.toArray
        new WriteAheadLogBackedBlockRDD[T](ssc.sparkContext, blockIds, walRecordHandles, isBlockIdValid)
      } else {
        // Else, create a BlockRDD. However, if there are some blocks with WAL info but not
        // others then that is unexpected and log a warning accordingly.
        if (blockInfos.find(_.walRecordHandleOption.nonEmpty).nonEmpty) {
          if (WriteAheadLogUtils.enableReceiverLog(ssc.conf)) {
            logError("Some blocks do not have Write Ahead Log information; this is unexpected and data may not be recoverable after driver failures")
          } else {
            logWarning("Some blocks have Write Ahead Log information; this is unexpected")
          }
        }
        val validBlockIds = blockIds.filter { id => ssc.sparkContext.env.blockManager.master.contains(id) }
        if (validBlockIds.size != blockIds.size) {
          logWarning("Some blocks could not be recovered as they were not found in memory. " +
            "To prevent such data loss, enabled Write Ahead Log (see programming guide " +
            "for more details.")
        }
        new BlockRDD[T](ssc.sc, validBlockIds)
      }
    } else {
      // If no block is ready now, creating WriteAheadLogBackedBlockRDD or BlockRDD
      // according to the configuration
      if (WriteAheadLogUtils.enableReceiverLog(ssc.conf)) {
        new WriteAheadLogBackedBlockRDD[T](
          ssc.sparkContext, Array.empty, Array.empty, Array.empty)
      } else {
        new BlockRDD[T](ssc.sc, Array.empty)
      }
    }
}

如果blockInfos为空,BlockRDD的分区数也为空,所以要判断BlockRDD的分区数。这里只判断了当前rdd的父RDD分区是否为空,因为父RDD和BlockRDD在同一个stage内,分区数是一致的。RDD的依赖关系可以通过rdd.toDebugString和web页面获得,stage划分也可以通过web页面获得。

  1. 第二种情况,以Direct kafka的方式接收数据的方式,计算WordCount为例,代码如下
object DirectKafkaDemo{
  def main(args: Array[String]) {

    val topics = "DirectKafkaDemo"
    val brokers = "*:9092,*:9092"
    val sparkConf = new SparkConf().setAppName("DirectKafkaWordCount").setMaster("local[2]")
    sparkConf.set("spark.testing.memory", "2147480000")
    val ssc = new StreamingContext(sparkConf, Seconds(10))
    val topicsSet = topics.split(",").toSet
    val kafkaParams = Map[String, String]("metadata.broker.list" -> brokers)
    val messages = KafkaUtils.createDirectStream[String, String, StringDecoder, StringDecoder](
      ssc, kafkaParams, topicsSet)
    val result = messages.map(_._2).flatMap(_.split(" ")).map((_, 1)).reduceByKey(_ + _)

    result.foreachRDD(rdd => {

      val num= rdd.dependencies(0).rdd.dependencies(0).rdd.dependencies(0).rdd.dependencies(0).rdd.count()

      if(num>0) {
        rdd.foreachPartition(data => {
          val conn = MDBManager.getConnection
          conn.setAutoCommit(false)
          val sql = "insert into word set key1=?,num=?;"
          val preparedStatement = conn.prepareStatement(sql)
          data.foreach(recode => {
            val key = recode._1;
            val num = recode._2;
            preparedStatement.setString(1, key)
            preparedStatement.setInt(2, num)
            preparedStatement.addBatch()
            println("key:" + key + "\tnum:" + num)
          })
          preparedStatement.executeBatch()
          conn.commit()
          conn.close()
        })
      }else{
          println(">>>>>>>>>>>>>>>>>>>>>>RDD Empty")
      }
    })

    ssc.start()
    ssc.awaitTermination()

  }
}

这里使用了KafkaRDD的count操作来判断KafkaRDD是否为空,如果不为空,将计算结果保存到数据库中,减少不必要是数据库操作。获取KafkaRDD的代码如下,不同代码编写RDD的依赖关系是不一样的,要根据代码而定

val num= rdd.dependencies(0).rdd.dependencies(0).rdd.dependencies(0).rdd.dependencies(0).rdd.count()

看一下KafkaRDD的count()方法,他重写了RDD的count方法,代码如下

override def count(): Long = offsetRanges.map(_.count).sum

他并没有触发一个runJob操作,而是通过读取kafka分区的offset偏移量来计算RDD记录的个数,这里是利用了kafka的特性。通过依赖关系找到KafkaRDD,然后调用KafkaRDD的count()方法,就知道KafkaRDD是否为空,如果KafkaRDD为空,就没必要runJob了。
那么判断KafkaRDD的分区数是否也可以,看一下KafkaRDD的分区数是怎么得来的,代码如下

override def getPartitions: Array[Partition] = {
    offsetRanges.zipWithIndex.map { case (o, i) =>
        val (host, port) = leaders(TopicAndPartition(o.topic, o.partition))
        new KafkaRDDPartition(i, o.topic, o.partition, o.fromOffset, o.untilOffset, host, port)
    }.toArray
}

和offsetRanges的数量有关,因为offsetRanges是根据kafka的分区数而来,offsetRanges的数量是固定不变的,从而KafkaRDD的分区数是固定的,不管分区有没有数据,因此不能判断KafkaRDD的分区数

总结
不同数据接收方式的RDD,表现数据为空都可能是不一样的,通过RDD的依赖关系正确找到数据源RDD是最关键的。此方法使用一定要结合业务和RDD的具体生成方式,这里说的依赖关系都是之有一个父RDD,如果有多个父RDD要根据情况决定是否可以使用此方法。

你可能感兴趣的:(19 Spark Streaming中空RDD的处理)