- 决策树算法及其python实例
m0_74831463
算法决策树python
一、决策数的概念什么是决策树算法呢?决策树(DecisionTree)是一种基本的分类与回归方法,本文主要讨论分类决策树。决策树模型呈树形结构,在分类问题中,表示基于特征对数据进行分类的过程。它可以认为是if-then规则的集合。每个内部节点表示在属性上的一个测试,每个分支代表一个测试输出,每个叶节点代表一种类别二、决策树的构造1、决策树的构造步骤输入:训练集D={(21,11),(z2,32),
- OpenCV图像拼接(1)自动校准之校准旋转相机的函数calibrateRotatingCamera()
村北头的码农
OpenCVopencv人工智能
操作系统:ubuntu22.04OpenCV版本:OpenCV4.9IDE:VisualStudioCode编程语言:C++11算法描述cv::detail::calibrateRotatingCamera是OpenCV中用于校准旋转相机的函数。它特别适用于那种相机相对于一个固定的场景进行纯旋转运动的情况,比如在全景拼接过程中。此函数可以从一系列单应性矩阵(HomographyMatrices)中
- OpenCV图像拼接(2)基于羽化(feathering)技术的图像融合算法拼接类cv::detail::FeatherBlender
村北头的码农
OpenCVopencv算法人工智能
操作系统:ubuntu22.04OpenCV版本:OpenCV4.9IDE:VisualStudioCode编程语言:C++11算法描述cv::detail::FeatherBlender是OpenCV中用于图像拼接的一个类,它属于stitching模块的一部分。这个类实现了基于羽化(feathering)技术的图像融合算法,用于平滑地混合重叠区域中的图像,从而生成无缝的全景图。主要特点羽化技术:
- 探索Sfm-python: 一款强大的计算机视觉库
缪昱锨Hunter
探索Sfm-python:一款强大的计算机视觉库去发现同类优质开源项目:https://gitcode.com/在计算机视觉领域,Sfm-python是一个值得关注的开源项目,它以简洁高效的Python接口提供结构化从运动(StructurefromMotion,SfM)算法。如果你对3D重建、图像匹配或地理定位有兴趣,那么这个项目将是你不可或缺的工具。让我们一起深入了解一下它的技术细节、应用场景
- 【小白深度教程 1.32】手把手教你从多视角图像进行 3D 重建(SfM 算法)
小寒学姐学AI
3d算法计算机视觉人工智能深度学习python三维重建
【小白深度教程1.32】手把手教你从多视角图像进行3D重建(SfM算法)1.SfM三维重建算法简介2.SfM方法和原理3.安装依赖库4.构建数据集5.可视化结果6.完整代码1.SfM三维重建算法简介从多张照片中开发三维模型被称为多视图3D重建。数码相机的进步以及图像分辨率和清晰度的提高,使得利用仅有的相机而非昂贵的特殊传感器来重建3D图像成为可能。重建的目标是从一组照片中推导场景的几何结构,假设摄
- python学智能算法(八)|决策树
西猫雷婶
人工智能python学习笔记机器学习python决策树开发语言
【1】引言前序学习进程中,已经对KNN邻近算法有了探索,相关文章链接为:python学智能算法(七)|KNN邻近算法-CSDN博客但KNN邻近算法有一个特点是:它在分类的时候,不能知晓每个类别内事物的具体面貌,只能获得类别,停留在事物的表面。为了进一步探索事物的内在特征,就需要学习新的算法。本篇文章就是在KNN的基础上学习新算法:决策树。【2】原理分析在学习决策树执之前,需要先了解香农熵。本科学控
- 17-OpenCVSharp 中实现 Halcon 的 Points_Harris算子(Harris 角点检测)
观视界
#opencv人工智能计算机视觉图像处理矩阵
专栏地址:《OpenCV功能使用详解200篇》《OpenCV算子使用详解300篇》《Halcon算子使用详解300篇》内容持续更新,欢迎点击订阅在OpenCVSharp中实现类似于Halcon中的Points_Harris算子,实际上就是实现Harris角点检测算法。Harris角点检测算法是用于检测图像中的角点特征,可以用来进行图像匹配、物体识别等任务。Halcon提供的Points_Harri
- 密码策略合规性检查仪表盘
闲人编程
python网络服务器异常报警实时监控多因素认证合规性密码策略
目录一、前言二、密码策略合规性背景与意义2.1密码策略的重要性2.2密码策略合规性检查的需求三、系统设计思路与架构3.1数据采集与加解密模块3.2异步任务调度与GPU加速模块3.3密码策略检查算法模块3.4GUI界面模块四、核心数学公式与算法证明4.1AES-GCM加解密公式4.2密码强度评分算法4.3合规性检测算法4.4统计与报告生成五、异步任务调度与GPU加速设计六、GUI界面设计与功能模块七
- 关于重投影误差小记
文弱_书生
乱七八糟数码相机算法
重投影误差(ReprojectionError)讲解1.什么是重投影误差?在三维重建或相机标定过程中,我们希望将一个世界坐标系中的三维点投影到相机的图像平面上。理想情况下,该点的投影位置应该与实际图像中的观测点(如特征点)完全匹配,但由于噪声、相机模型的不准确性或优化算法的误差,这两个点可能会有偏差。重投影误差就是这个偏差的度量,即:e=∥pobserved−preprojected∥e=\|p_
- 关于离子滤波小记
文弱_书生
乱七八糟人工智能计算机视觉算法
粒子滤波(ParticleFilter,PF)粒子滤波是一种基于蒙特卡洛方法的贝叶斯滤波算法,主要用于解决非线性、非高斯的状态估计问题。它广泛应用于机器人定位、目标跟踪、金融建模等领域。1.粒子滤波的基本概念粒子滤波的核心思想是用一组加权的**随机样本(粒子)**来近似后验概率分布,而非采用卡尔曼滤波那样的参数化分布假设(如高斯分布)。设系统的状态模型如下:xk=f(xk−1,uk,wk)x_k=
- 算法分析——动态规划
飞跑的鱼
算法
ProblemP08.[算法课动态规划]背包问题一个背包有一定的承重c,有N件物品。设数组下标从11开始。每件物品都有自己的价值,记录在数组V中,也都有自己的重量,记录在数组W中,每件物品只能选择要装入还是不装入背包,要求在不超过背包承重的前提下,选出的物品总价值最大。输出能装入背包的物品的最大总价值。输入输入一行两个整数物品数量N(1≤N≤500)承重c(1≤c≤500)。接下来输入一行N个整数
- 常见经典目标检测算法
109702008
人工智能#深度学习目标检测人工智能
ChatGPT目标检测(ObjectDetection)是计算机视觉领域的一个重要分支,其目的是识别数字图像中的不同对象,并给出它们的位置和类别。近年来,许多经典的目标检测算法被提出并广泛应用。以下是一些常见的经典目标检测算法:1.R-CNN(RegionswithCNNfeatures):R-CNN通过使用区域提议方法(如选择性搜索)首先生成潜在的边界框,然后使用卷积神经网络(CNN)提取特征,
- 认识软件测试中的黑天鹅
Alan_Wdd
测试专题测试黑天鹅
1、软件测试中的“黑天鹅”几年前,我带领的一个测试小组遗漏了一个严重的bug到网上,当用户反馈这个bug后,我们对它进行了深入的分析和重现,最终所有人一致认为,这个bug能够发生实在是机缘巧合,因为它需要多个条件同时发生才有可能触发,比如“XX算法开关必须打开、XX算法开关又必须关闭、XX参数必须取某个特定值、用户的使用环境必须是XX个场景、硬件必须是使用XX接口板、软件必须是XX版本、XX的带宽
- 北斗导航|接收机自主完好性监测算法研究现状及发展趋势
单北斗SLAMer
卫星导航毕业论文设计算法
接收机自主完好性监测(RAIM)算法是保障卫星导航系统可靠性的核心技术,其研究现状与发展趋势可从算法设计、多系统融合、智能化技术等方面进行分析。以下基于现有研究成果及行业动态进行总结:一、研究现状传统故障检测算法RAIM的核心目标是通过冗余观测值检测并隔离故障卫星。早期研究聚焦单星故障场景,主要方法包括:残差分析法:通过比较观测残差与阈值判断故障,如最小二乘残差和法、奇偶矢量法等。距离比较法:基于
- ALO蚁狮优化算法:从背景到实战的全面解析
der丸子吱吱吱
智能优化算法ALO算法
目录引言背景2.1蚁狮优化算法的起源2.2自然启发式算法的背景2.3ALO的发展与应用原理3.1蚁狮的生物行为3.2ALO的数学建模3.3算法流程与关键步骤实战应用4.1函数优化问题4.2工程优化案例4.3组合优化与约束优化代码实现与结果分析5.1Python代码实现5.2实验设计与结果分析5.3性能评估与优化建议学习资源6.1工具推荐6.2网站与文献资源6.3ALO与AI结合的方法结论1.引言在
- 二叉树的三种遍历【树的遍历】(C++实现)Binary Tree Traversal
Vitalia
理论基础c++树的遍历二叉树
图论入门【数据结构基础】:什么是树?如何表示树?之前我们有分别讲解二叉树的三种遍历的相关代码实现:⭐算法OJ⭐二叉树的前序遍历【树的遍历】(C++实现)BinaryTreePreorderTraversal⭐算法OJ⭐二叉树的中序遍历【树的遍历】(C++实现)BinaryTreeInorderTraversal⭐算法OJ⭐二叉树的后序遍历【树的遍历】(C++实现)BinaryTreePostord
- 使用Nginx实现后端负载均衡
海上彼尚
node.jsnginx负载均衡运维node.js
目录引言一、负载均衡的核心作用二、基础配置三步曲1.定义后端服务器组(upstream)2.配置代理转发规则3.重载配置生效三、六大负载均衡算法详解四、高级配置技巧1.健康检查机制2.会话保持方案3.SSL终止优化五、实战场景配置案例案例1:WebSocket负载均衡案例2:多级地域分发案例3:连接池优化六、最佳实践与陷阱规避结语引言在现代高并发场景下,单一服务器难以支撑海量请求的处理。Nginx
- SM系列密码算法在网络空间安全中的体系化应用研究
安全
一、算法架构与技术特性解析1.1SM2椭圆曲线公钥算法基于Fp-256r1椭圆曲线构建,采用Weierstrass方程形式:y²≡x³+ax+b(modp),其核心安全参数满足:素数模p:256位大素数基域Fp上椭圆曲线阶n满足n>2^191抗MOV约化攻击特性支持高效标量乘运算优化密钥协商协议采用改进的ECMQV机制,通过两步验证实现前向安全性,计算流程包含:临时密钥对生成:(d_A,P_A)←
- 密码学协议在SSL/TLS证书体系中的深度解析
安全
摘要:本文从密码学协议演进视角,系统剖析SSL/TLS证书体系的实现机理与安全边界。聚焦TLS1.3协议标准,揭示椭圆曲线密码体制(ECC)与混合密钥交换机制的协同运作,探讨证书透明度(CT)系统的密码学验证模型,并构建后量子时代数字证书的迁移路径框架。一、SSL/TLS协议栈的密码学架构演进X.509证书的密码学基因由PKI体系决定,其信任锚点植根于CA机构的数字签名算法选择。TLS1.3协议废
- 基于MATLAB路径规划仿真 轨迹规划,船舶轨迹跟踪控制,数学模
985计算机硕士
仿真模型matlab开发语言
MATLAB路径规划仿真轨迹规划,船舶轨迹跟踪控制,数学模MATLAB路径规划仿真轨迹规划,船舶轨迹跟踪控制,数学模型基于两轮差速的小车模型,用PID环节对航向角进行控制,迫使小车走向目标,或用PID环节对航向角和距离进行控制,迫使小车走向目标LQR算法可自行小车起点坐标文章目录初始化环境定义PID控制函数运行仿真代码说明:代码示例代码说明:为了实现基于两轮差速模型的小车在MATLAB中的路径规划
- 基于Matlab_simulink仿真相关 控制算法、优化算法相关帮助代做,原理讲解
985计算机硕士
仿真模型matlab算法开发语言
Matlab/simulink仿真相关控制算法、优化算法相关帮助代做,原理讲解:1.优化算法相关:蚁群优化算法,遗传优化算法等2.控制器相关:ADRC控制,鲁棒控制,神经网络控制,MPC等3.神经网络相关:BP神经网络,RBF神经网络,LSTM神经网络等文章目录1.优化算法相关蚁群优化算法(ACO)2.控制器相关ADRC控制3.神经网络相关BP神经网络1.构建光伏系统模型1.1光伏电池模型1.2控
- u-net系列算法
㡽闧㔯
人工智能算法
语义分割M整体结构:M概述就是编码解码过程简单但是很实用,应用广起初是做医学方向,现在也是U-net主要网络结构:还引入了特征拼接操作M以前我们都是加法,现在全都要这么简单的结构就能把分割任务做好U-net++整体网络结构:特征融合,拼接更全面其实跟densenet思想一致把能拼能凑的特征全用上就是升级版了U-net++DeepSupervision:也是很常见的事,多输出损失由多个位置计算,再更
- 基于FPGA的DDS连续FFT 仿真验证
toonyhe
FPGA开发fpga开发DDSFFTIFFT
基于FPGA的DDS连续FFT仿真验证1摘要本文聚焦AMDLogiCOREIPFastFourierTransform(FFT)核心,深入剖析其在FPGA设计中的应用。该FFT核心基于Cooley-Tukey算法,具备丰富特性,如支持多种数据精度、算术类型及灵活的运行时配置。文中详细介绍了其架构选项、端口设计、理论运算原理,以及在不同场景下的动态范围特性。同时,结合VivadoDesignSuit
- Marker可以快速且准确地将PDF转换为markdown格式。
星霜笔记
开源关注简介免费源码pdf
MarkerMarker可以快速且准确地将PDF转换为markdown格式。支持多种文档类型(针对书籍和科学论文进行了优化)支持所有语言移除页眉/页脚/其他杂质格式化表格和代码块提取并保存图像以及markdown将大多数方程转换为latex支持在GPU、CPU或MPS上运行工作原理Marker是一个由深度学习模型组成的管道:提取文本,必要时进行OCR处理(启发式算法,surya,tesseract
- 算法基础——蓝桥杯(python实现,实际上大多数用c++更明白易懂)(第一部分,共12个小题)
New_Teen
算法蓝桥杯python
1.成绩统计问题描述:编写一个程序,建立一个字典,每个字典包含姓名、学号、英语成绩、数学成绩和C++成绩,并通过字典操作平均分最高的学生和平均分最低的学生并且输出。输入格式:输入n+1行,第一行输入一个正整数n,表示学生数量;接下来的n行每行输入5个数据,分别表示姓名、学号、英语成绩、数学成绩和C++成绩。注意成绩有可能会有小数。输出格式:输出两行,第一行输出平均成绩最高的学生姓名。第二行输出平均
- 【C++】动态规划从入门到精通
諰.
动态规划c++
一、动态规划基础概念详解什么是动态规划动态规划(DynamicProgramming,DP)是一种通过将复杂问题分解为重叠子问题,并存储子问题解以避免重复计算的优化算法。它适用于具有以下两个关键性质的问题:最优子结构:问题的最优解包含子问题的最优解重叠子问题:不同决策序列会重复求解相同的子问题下面用一些例子(由浅入深)了解动态规划1.1斐波那契数列递归实现解析intfib(intn){if(n>d
- 【存储中间件】Redis核心技术与实战(六):Redis的设计与实现(缓存淘汰算法、过期策略与惰性删除)
道友老李
#Redis核心技术与实战架构师进阶-存储中间件缓存中间件redis
文章目录Redis的设计与实现缓存淘汰算法maxmemoryNoevictionvolatile-lruvolatile-ttlvolatile-randomallkeys-lruallkeys-randomLRU算法近似LRU算法LFU算法为什么Redis要缓存系统时间戳过期策略和惰性删除过期惰性删除lazyfree个人主页:道友老李欢迎加入社区:道友老李的学习社区Redis的设计与实现缓存淘汰
- 风控算法(一)——数据测试
月亮月亮要去太阳
机器学习人工智能
下面的内容都是针对数据源测试的一些可能得问题:1、请描述你在开发和执行数据测试流程时的具体步骤。确定样本(对齐样本与时间,去除假样本)——确定特征(确认目前特征)——数据信息(返回的数据字典、收费方式、底层数据:特征、分数)——数据清洗(缺失值替换)——数据训练形成报告。2、如何确定数据产品在风险模型中的潜在价值和适用性的?AUC、IV、相关性、性价比、数据产品背景和领域3、请详细描述你负责的10
- 12.1-12.7学习周报
谢m鑫天天揍我
学习
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录摘要Abstract一、k-近邻法二、持续学习总结摘要本周主要学习了k邻近算法的原理和应用场景,了解了持续学习的有关概念和原理。AbstractThisweek,wemainlylearnedtheprinciplesandapplicationscenariosofk-proximityalgorithm,andlearne
- 笔记:代码随想录算法训练营day57:99.岛屿数量 深搜、岛屿数量 广搜、100.岛屿的最大面积
jingjingjing1111
深度优先算法笔记
学习资料:代码随想录注:文中含大模型生成内容99.岛屿数量卡码网题目链接(ACM模式)先看深搜方法:找到未标标记过的说明找到一片陆地的或者一片陆地的一个角落,dfs搜索是寻找相连接的陆地其余部分并做好标记#include#includeusingnamespacestd;intdirection[4][2]={0,1,-1,0,0,-1,1,0};voiddfs(constvector>&B612
- ios内付费
374016526
ios内付费
近年来写了很多IOS的程序,内付费也用到不少,使用IOS的内付费实现起来比较麻烦,这里我写了一个简单的内付费包,希望对大家有帮助。
具体使用如下:
这里的sender其实就是调用者,这里主要是为了回调使用。
[KuroStoreApi kuroStoreProductId:@"产品ID" storeSender:self storeFinishCallBa
- 20 款优秀的 Linux 终端仿真器
brotherlamp
linuxlinux视频linux资料linux自学linux教程
终端仿真器是一款用其它显示架构重现可视终端的计算机程序。换句话说就是终端仿真器能使哑终端看似像一台连接上了服务器的客户机。终端仿真器允许最终用户用文本用户界面和命令行来访问控制台和应用程序。(LCTT 译注:终端仿真器原意指对大型机-哑终端方式的模拟,不过在当今的 Linux 环境中,常指通过远程或本地方式连接的伪终端,俗称“终端”。)
你能从开源世界中找到大量的终端仿真器,它们
- Solr Deep Paging(solr 深分页)
eksliang
solr深分页solr分页性能问题
转载请出自出处:http://eksliang.iteye.com/blog/2148370
作者:eksliang(ickes) blg:http://eksliang.iteye.com/ 概述
长期以来,我们一直有一个深分页问题。如果直接跳到很靠后的页数,查询速度会比较慢。这是因为Solr的需要为查询从开始遍历所有数据。直到Solr的4.7这个问题一直没有一个很好的解决方案。直到solr
- 数据库面试题
18289753290
面试题 数据库
1.union ,union all
网络搜索出的最佳答案:
union和union all的区别是,union会自动压缩多个结果集合中的重复结果,而union all则将所有的结果全部显示出来,不管是不是重复。
Union:对两个结果集进行并集操作,不包括重复行,同时进行默认规则的排序;
Union All:对两个结果集进行并集操作,包括重复行,不进行排序;
2.索引有哪些分类?作用是
- Android TV屏幕适配
酷的飞上天空
android
先说下现在市面上TV分辨率的大概情况
两种分辨率为主
1.720标清,分辨率为1280x720.
屏幕尺寸以32寸为主,部分电视为42寸
2.1080p全高清,分辨率为1920x1080
屏幕尺寸以42寸为主,此分辨率电视屏幕从32寸到50寸都有
适配遇到问题,已1080p尺寸为例:
分辨率固定不变,屏幕尺寸变化较大。
如:效果图尺寸为1920x1080,如果使用d
- Timer定时器与ActionListener联合应用
永夜-极光
java
功能:在控制台每秒输出一次
代码:
package Main;
import javax.swing.Timer;
import java.awt.event.*;
public class T {
private static int count = 0;
public static void main(String[] args){
- Ubuntu14.04系统Tab键不能自动补全问题解决
随便小屋
Ubuntu 14.04
Unbuntu 14.4安装之后就在终端中使用Tab键不能自动补全,解决办法如下:
1、利用vi编辑器打开/etc/bash.bashrc文件(需要root权限)
sudo vi /etc/bash.bashrc
接下来会提示输入密码
2、找到文件中的下列代码
#enable bash completion in interactive shells
#if
- 学会人际关系三招 轻松走职场
aijuans
职场
要想成功,仅有专业能力是不够的,处理好与老板、同事及下属的人际关系也是门大学问。如何才能在职场如鱼得水、游刃有余呢?在此,教您简单实用的三个窍门。
第一,多汇报
最近,管理学又提出了一个新名词“追随力”。它告诉我们,做下属最关键的就是要多请示汇报,让上司随时了解你的工作进度,有了新想法也要及时建议。不知不觉,你就有了“追随力”,上司会越来越了解和信任你。
第二,勤沟通
团队的力
- 《O2O:移动互联网时代的商业革命》读书笔记
aoyouzi
读书笔记
移动互联网的未来:碎片化内容+碎片化渠道=各式精准、互动的新型社会化营销。
O2O:Online to OffLine 线上线下活动
O2O就是在移动互联网时代,生活消费领域通过线上和线下互动的一种新型商业模式。
手机二维码本质:O2O商务行为从线下现实世界到线上虚拟世界的入口。
线上虚拟世界创造的本意是打破信息鸿沟,让不同地域、不同需求的人
- js实现图片随鼠标滚动的效果
百合不是茶
JavaScript滚动属性的获取图片滚动属性获取页面加载
1,获取样式属性值
top 与顶部的距离
left 与左边的距离
right 与右边的距离
bottom 与下边的距离
zIndex 层叠层次
例子:获取左边的宽度,当css写在body标签中时
<div id="adver" style="position:absolute;top:50px;left:1000p
- ajax同步异步参数async
bijian1013
jqueryAjaxasync
开发项目开发过程中,需要将ajax的返回值赋到全局变量中,然后在该页面其他地方引用,因为ajax异步的原因一直无法成功,需将async:false,使其变成同步的。
格式:
$.ajax({ type: 'POST', ur
- Webx3框架(1)
Bill_chen
eclipsespringmaven框架ibatis
Webx是淘宝开发的一套Web开发框架,Webx3是其第三个升级版本;采用Eclipse的开发环境,现在支持java开发;
采用turbine原型的MVC框架,扩展了Spring容器,利用Maven进行项目的构建管理,灵活的ibatis持久层支持,总的来说,还是一套很不错的Web框架。
Webx3遵循turbine风格,velocity的模板被分为layout/screen/control三部
- 【MongoDB学习笔记五】MongoDB概述
bit1129
mongodb
MongoDB是面向文档的NoSQL数据库,尽量业界还对MongoDB存在一些质疑的声音,比如性能尤其是查询性能、数据一致性的支持没有想象的那么好,但是MongoDB用户群确实已经够多。MongoDB的亮点不在于它的性能,而是它处理非结构化数据的能力以及内置对分布式的支持(复制、分片达到的高可用、高可伸缩),同时它提供的近似于SQL的查询能力,也是在做NoSQL技术选型时,考虑的一个重要因素。Mo
- spring/hibernate/struts2常见异常总结
白糖_
Hibernate
Spring
①ClassNotFoundException: org.aspectj.weaver.reflect.ReflectionWorld$ReflectionWorldException
缺少aspectjweaver.jar,该jar包常用于spring aop中
②java.lang.ClassNotFoundException: org.sprin
- jquery easyui表单重置(reset)扩展思路
bozch
formjquery easyuireset
在jquery easyui表单中 尚未提供表单重置的功能,这就需要自己对其进行扩展。
扩展的时候要考虑的控件有:
combo,combobox,combogrid,combotree,datebox,datetimebox
需要对其添加reset方法,reset方法就是把初始化的值赋值给当前的组件,这就需要在组件的初始化时将值保存下来。
在所有的reset方法添加完毕之后,就需要对fo
- 编程之美-烙饼排序
bylijinnan
编程之美
package beautyOfCoding;
import java.util.Arrays;
/*
*《编程之美》的思路是:搜索+剪枝。有点像是写下棋程序:当前情况下,把所有可能的下一步都做一遍;在这每一遍操作里面,计算出如果按这一步走的话,能不能赢(得出最优结果)。
*《编程之美》上代码有很多错误,且每个变量的含义令人费解。因此我按我的理解写了以下代码:
*/
- Struts1.X 源码分析之ActionForm赋值原理
chenbowen00
struts
struts1在处理请求参数之前,首先会根据配置文件action节点的name属性创建对应的ActionForm。如果配置了name属性,却找不到对应的ActionForm类也不会报错,只是不会处理本次请求的请求参数。
如果找到了对应的ActionForm类,则先判断是否已经存在ActionForm的实例,如果不存在则创建实例,并将其存放在对应的作用域中。作用域由配置文件action节点的s
- [空天防御与经济]在获得充足的外部资源之前,太空投资需有限度
comsci
资源
这里有一个常识性的问题:
地球的资源,人类的资金是有限的,而太空是无限的.....
就算全人类联合起来,要在太空中修建大型空间站,也不一定能够成功,因为资源和资金,技术有客观的限制....
&
- ORACLE临时表—ON COMMIT PRESERVE ROWS
daizj
oracle临时表
ORACLE临时表 转
临时表:像普通表一样,有结构,但是对数据的管理上不一样,临时表存储事务或会话的中间结果集,临时表中保存的数据只对当前
会话可见,所有会话都看不到其他会话的数据,即使其他会话提交了,也看不到。临时表不存在并发行为,因为他们对于当前会话都是独立的。
创建临时表时,ORACLE只创建了表的结构(在数据字典中定义),并没有初始化内存空间,当某一会话使用临时表时,ORALCE会
- 基于Nginx XSendfile+SpringMVC进行文件下载
denger
应用服务器Webnginx网络应用lighttpd
在平常我们实现文件下载通常是通过普通 read-write方式,如下代码所示。
@RequestMapping("/courseware/{id}")
public void download(@PathVariable("id") String courseID, HttpServletResp
- scanf接受char类型的字符
dcj3sjt126com
c
/*
2013年3月11日22:35:54
目的:学习char只接受一个字符
*/
# include <stdio.h>
int main(void)
{
int i;
char ch;
scanf("%d", &i);
printf("i = %d\n", i);
scanf("%
- 学编程的价值
dcj3sjt126com
编程
发一个人会编程, 想想以后可以教儿女, 是多么美好的事啊, 不管儿女将来从事什么样的职业, 教一教, 对他思维的开拓大有帮助
像这位朋友学习:
http://blog.sina.com.cn/s/articlelist_2584320772_0_1.html
VirtualGS教程 (By @林泰前): 几十年的老程序员,资深的
- 二维数组(矩阵)对角线输出
飞天奔月
二维数组
今天在BBS里面看到这样的面试题目,
1,二维数组(N*N),沿对角线方向,从右上角打印到左下角如N=4: 4*4二维数组
{ 1 2 3 4 }
{ 5 6 7 8 }
{ 9 10 11 12 }
{13 14 15 16 }
打印顺序
4
3 8
2 7 12
1 6 11 16
5 10 15
9 14
13
要
- Ehcache(08)——可阻塞的Cache——BlockingCache
234390216
并发ehcacheBlockingCache阻塞
可阻塞的Cache—BlockingCache
在上一节我们提到了显示使用Ehcache锁的问题,其实我们还可以隐式的来使用Ehcache的锁,那就是通过BlockingCache。BlockingCache是Ehcache的一个封装类,可以让我们对Ehcache进行并发操作。其内部的锁机制是使用的net.
- mysqldiff对数据库间进行差异比较
jackyrong
mysqld
mysqldiff该工具是官方mysql-utilities工具集的一个脚本,可以用来对比不同数据库之间的表结构,或者同个数据库间的表结构
如果在windows下,直接下载mysql-utilities安装就可以了,然后运行后,会跑到命令行下:
1) 基本用法
mysqldiff --server1=admin:12345
- spring data jpa 方法中可用的关键字
lawrence.li
javaspring
spring data jpa 支持以方法名进行查询/删除/统计。
查询的关键字为find
删除的关键字为delete/remove (>=1.7.x)
统计的关键字为count (>=1.7.x)
修改需要使用@Modifying注解
@Modifying
@Query("update User u set u.firstna
- Spring的ModelAndView类
nicegege
spring
项目中controller的方法跳转的到ModelAndView类,一直很好奇spring怎么实现的?
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* yo
- 搭建 CentOS 6 服务器(13) - rsync、Amanda
rensanning
centos
(一)rsync
Server端
# yum install rsync
# vi /etc/xinetd.d/rsync
service rsync
{
disable = no
flags = IPv6
socket_type = stream
wait
- Learn Nodejs 02
toknowme
nodejs
(1)npm是什么
npm is the package manager for node
官方网站:https://www.npmjs.com/
npm上有很多优秀的nodejs包,来解决常见的一些问题,比如用node-mysql,就可以方便通过nodejs链接到mysql,进行数据库的操作
在开发过程往往会需要用到其他的包,使用npm就可以下载这些包来供程序调用
&nb
- Spring MVC 拦截器
xp9802
spring mvc
Controller层的拦截器继承于HandlerInterceptorAdapter
HandlerInterceptorAdapter.java 1 public abstract class HandlerInterceptorAdapter implements HandlerIntercep