- 攻克AWS认证机器学习工程师(AWS Certified Machine Learning Engineer) - 助理级别认证:我的成功路线图
硅基创想家
AI-人工智能与大模型aws机器学习云计算AWS认证
引言当我决定考取AWS认证机器学习工程师-助理(AWSCertifiedMachineLearningEngineer—Associate)级别证书时,我就预料到这将是一段充满挑战但回报颇丰的旅程。跟你说吧,它在这两方面都没让我失望。这项考试面向的是不仅理解机器学习原理,还对AWS生态系统有扎实基础认知的专业人士。如果你还未达到AWS认证解决方案架构师-助理级别的水平,那你得先夯实这些基础。一个不
- Tritonserver 在得物的最佳实践
运维
一、Tritonserver介绍Tritonserver是Nvidia推出的基于GPU和CPU的在线推理服务解决方案,因其具有高性能的并发处理和支持几乎所有主流机器学习框架模型的特点,是目前云端的GPU服务高效部署的主流方案。Tritonserver的部署是以模型仓库(ModelRepository)的形式体现的,即需要模型文件和配置文件,且按一定的格式放置如下,根目录下每个模型有各自的文件夹。.
- 机器翻译技术的演进与未来趋势:从规则到神经网络的革新
Echo_Wish
人工智能前沿技术机器翻译神经网络人工智能
随着全球化的不断推进和多语言交流的日益频繁,机器翻译(MachineTranslation,MT)技术的需求日益增长。机器翻译技术经历了从基于规则的方法到统计方法,再到如今的神经网络方法的发展历程。本文将探讨机器翻译技术的演进过程及其未来趋势,并结合Python代码示例,展示现代机器翻译技术的应用。一、机器翻译技术的发展历程1.基于规则的机器翻译(RBMT)早期的机器翻译技术主要基于规则(Rule
- python同花顺交易接口_开启量化第一步!同花顺iFinD数据接口免费版简易操作教程...
weixin_39564527
python同花顺交易接口
金融市场波动频繁,投资往往会夹杂非理性的情绪。而量化交易,旨在以先进的数学模型替代人为的主观判断,利用计算机技术从庞大的历史数据中海选能带来超额收益的多种“大概率”事件以制定策略,辅助投资者进行理性投资。不过计算机分析存在一定的技术门槛,有没有简单易学的量化交易方式,能够快速获取有价值的投资策略方案呢?同花顺iFinD数据接口免费版提供简易的操作与丰富的实操案例,将作为引路者,带你迈入量化世界!P
- python同花顺股票实时数据_如何获取实时的股票数据?
weixin_39575648
python同花顺股票实时数据
Ref===>tushare系统:Ubuntu15.04Python:2.7环境包:Anaconda,仅供娱乐...最近在学习Python语言,刚好也想学学炒股,因此学习了一些基础知识后,打算做一些股票相关的demo练手,第一个要解决的问题当然是数据采集。翻遍了网络,看了一些朋友的代码片段(尤其感谢tushare的作者),知道了向API请求数据的格式大概是这样的:http://api.financ
- 量化交易软件排名有哪些?如何评判其优劣?各软件有何独特之处?
财云量化
python炒股自动化量化交易程序化交易量化交易软件排名优劣评判独特之处股票量化接口股票API接口
炒股自动化:申请官方API接口,散户也可以python炒股自动化(0),申请券商API接口python炒股自动化(1),量化交易接口区别Python炒股自动化(2):获取股票实时数据和历史数据Python炒股自动化(3):分析取回的实时数据和历史数据Python炒股自动化(4):通过接口向交易所发送订单Python炒股自动化(5):通过接口查询订单,查询账户资产股票量化,Python炒股,CSDN
- 微软 LayoutLMv3:通过统一文本和图像掩码进行文档人工智能预训练
人工智能
LayoutLMv3:通过统一文本和图像掩码进行文档人工智能预训练LayoutLMv3应用统一的文本-图像多模态Transformer来学习跨模态表示。Transformer具有多层架构,每层主要由多头自注意力机制和逐位置全连接前馈网络组成。Transformer的输入是文本嵌入$Y=y_{1:L}$和图像嵌入$X=x_{1:M}$序列的连接,其中$L$和$M$分别是文本和图像的序列长度。通过Tr
- AI时代前端开发的创造力:解放还是束缚?
前端
在人工智能(AI)快速发展的时代,AI技术的影响已经渗透到各个领域,从医疗保健到金融服务,再到创意产业。AI工具的出现,为前端开发带来了前所未有的效率提升,但也引发了人们对创造力的担忧:这些强大的AI写代码工具会解放前端工程师的创造力,还是会最终扼杀它?本文将以ScriptEcho为例,探讨AI辅助前端开发工具对前端工程师创造力的双面影响。AI辅助前端开发对创造力的潜在负面影响不可否认,AI辅助前
- AI前端开发学习资源与途径:开启你的智能化前端之旅
前端
随着人工智能技术的飞速发展,AI写代码工具已经不再是遥不可及的梦想,它正深刻地改变着前端开发的模式。AI赋能前端开发,不仅提高了开发效率,也降低了学习门槛,为更多开发者打开了通往智能化前端世界的大门。然而,学习AI前端开发也面临着诸多挑战,需要系统学习和持续实践。本文将为你详细介绍AI前端开发的学习途径、资源以及实践经验,助你开启这段精彩的旅程。AI前端开发的兴起及重要性近年来,人工智能技术在各个
- AI前端开发:与新技术融合,重塑职业发展之路
前端
近年来,人工智能(AI)技术飞速发展,深刻地改变着各个行业,前端开发领域也不例外。AI写代码工具的兴起,为前端开发者带来了前所未有的机遇和挑战。本文将探讨AI前端开发与其他技术的融合,分析其对职业发展的影响,并以ScriptEcho为例,解读AI如何赋能前端开发。AI前端开发与其他技术的融合:机遇与挑战并存AI前端开发并非孤立存在,它与低代码/无代码平台、区块链技术、Web3.0、元宇宙等新兴技术
- AI时代的前端开发:拥抱变化,迎接挑战
前端
近年来,人工智能(AI)技术的飞速发展深刻地改变着各个行业,前端开发领域也不例外。面对AI带来的冲击和挑战,开发者们需要积极拥抱变化,学习新技能,才能在竞争激烈的市场中立于不败之地。本文将探讨AI时代前端开发面临的新挑战,以及如何利用AI赋能前端开发,提高效率,应对技术更新迭代。关键词:AI写代码工具AI时代前端开发的新挑战AI技术的快速发展,为前端开发带来了前所未有的机遇,同时也带来了新的挑战。
- DeepSeek 实现原理探析
rockmelodies
人工智能aideepseek深度学习
DeepSeek实现原理探析引言DeepSeek是一种基于深度学习的智能搜索技术,它通过结合自然语言处理(NLP)、信息检索(IR)和机器学习(ML)等多领域的技术,旨在提供更加精准、智能的搜索结果。本文将深入探讨DeepSeek的实现原理,分析其核心技术及其在实际应用中的表现。一、DeepSeek的核心技术自然语言处理(NLP)词嵌入(WordEmbedding):DeepSeek使用如Word
- Python基础入门----Python的编码规范:PEP 8介绍及基本遵循原则
redrose2100
Python从入门到进阶python开发语言
文章目录PEP8简介基本遵循原则1.缩进2.行宽3.空行4.导入5.空格6.命名约定7.表达式和语句中的空格8.注释9.编码声明10.文档字符串PEP8简介PEP8,或PythonEnhancementProposal8,是一个官方文档,发布于2001年。它由GuidovanRossum,Python语言的创始人,以及BarryWarsaw和NickCoghlan等社区成员共同编写。该文档提供了编
- 13、Python面试题解析:字符串的乘法是如何工作的?
千层冷面
pythonpythonjava开发语言
1.字符串乘法的基本概念在Python中,字符串支持与整数的乘法操作。字符串乘法的作用是将字符串重复指定的次数。语法如下:字符串*整数字符串:可以是任意字符串。整数:必须是非负整数,表示字符串重复的次数。示例result="hello"*3print(result)#输出:hellohellohello2.字符串乘法的工作原理字符串乘法的实现原理可以理解为以下步骤:检查整数是否为非负数:如果整数为
- Django视图与URLs路由详解
m0_74824802
面试学习路线阿里巴巴django数据库sqlite
在DjangoWeb框架中,视图(Views)和URLs路由(URLrouting)是Web应用开发的核心概念。它们共同负责将用户的请求映射到相应的Python函数,并返回适当的响应。本篇博客将深入探讨Django的视图和URLs路由系统,提供实际的代码示例和操作指导,确保读者能够具体而实际地了解如何使用这些功能来构建健壮的Web应用。目录Django视图与URLs路由详解一、理解Django视图
- Django学习笔记(第一天:Django基本知识简介与启动)
S1901
pythonDjangodjango学习笔记
博主毕业已经工作一年多了,最基本的测试工作已经完全掌握。一方面为了解决当前公司没有自动化测试平台的痛点,另一方面为了向更高级的测试架构师转型,于是重温Django的知识,用于后期搭建测试自动化平台。为什么不选择Java:Python语法简洁易读,适合快速开发。Selenium、Appium、pytest、Requests等工具对Python支持极好,且有丰富的文档和社区资源。Django简介Dja
- Calculate Correlation Matrix
六月五日
Deep-ML
CalculateCorrelationMatrixWriteaPythonfunctiontocalculatethecorrelationmatrixforagivendataset.Thefunctionshouldtakeina2DnumpyarrayXandanoptional2DnumpyarrayY.IfYisnotprovided,thefunctionshouldcalculat
- IPython使用技巧整理
AI普惠行者
IT基础ipython
以下是一些常见且有用的IPython使用技巧,整理如下:一、基本功能1.启动IPython:在终端输入`ipython`命令即可启动IPython环境。2.自动补全:使用`Tab`键进行变量和函数名的自动补全。例如,输入`pri`后按`Tab`键,会自动补全为`print`。二、魔法命令(MagicCommands)1.%timeit:用来计时小段代码的执行时间。```python%timeits
- python版halcon 转numpy
虚假程序设计
pythonnumpyopencv
新版Halcon支持python接口,Python函数和halcon函数名几乎完全相同,用python写一些对性能要求不高的插件还是很舒服的.(halcon-python环境配置可以看我之前的文章)众所周知python中图像是用numpy表示的,python常用的图像处理库matplotlib,pillow,opencv-python,Scipy,pgmagick....等等...所以图像转成nu
- halcon opencv C++环境配置 | halcon opencv |C++互转opencv和Halcon图像变量(非常详细)|(msvc2015/17)(143)
虚假程序设计
opencvc++人工智能
这是本人第一次正儿八经非调侃的态度写C相关的东西;VS的C++每次环境不好配置就让人望而却步;而python的优势在于环境几乎只需要pipinstallxxx;C#多数情况下nuget点点点在添加引用就能愉快的玩耍;而pyC#背后竟然是xxx;有一被分层包养的感觉;而C/CPP头文件程序链接文件(动态|静态)动态链接库这都啥??掌握pythonnetctypes咯咯咯嘎嘎嘎%$#@#$%&^*(&
- Python库房管理系统开发指南
Tech Synapse
python开发语言
在现代仓储管理中,高效、准确的信息系统是提高运营效率的关键。Python作为一种强大且易于学习的编程语言,非常适合用来开发简易而功能齐全的库房管理系统。本文将详细介绍如何使用Python编写一个基本的库房管理系统,包括商品入库、出库、查询库存及生成报表等功能。通过本文,读者不仅能学习到Python编程技巧,还能理解库房管理系统的基本架构和逻辑。一、系统需求分析在开发库房管理系统之前,我们需要明确系
- 常见的深度学习模型总结
编码时空的诗意行者
深度学习人工智能
1.深度前馈神经网络(DeepFeedforwardNetworks)发明时间:2006年左右,随着计算能力的提升和大数据集的可用性增加,深度学习开始兴起。发明动机:解决传统机器学习模型在复杂数据上的局限性,如线性模型无法处理非线性关系的数据。模型特点:由多个隐藏层组成的神经网络,每一层的节点与下一层的节点完全连接。应用场景:分类、回归、语音识别、图像识别等。2.卷积神经网络(Convolutio
- 使用Python爬虫获取淘宝item_search_tmall API接口数据
API快乐传递者
python淘宝APIpython爬虫开发语言
一、引言在电商运营和市场分析中,获取商品搜索数据是了解市场动态、用户需求和竞争对手的重要手段。淘宝作为国内最大的电商平台之一,提供了丰富的API接口,其中item_search_tmall接口允许开发者通过关键字搜索天猫平台上的商品信息。本文将详细介绍如何使用Python编写爬虫程序,调用淘宝的item_search_tmall接口获取商品搜索数据。二、淘宝item_search_tmall接口简
- Python的pickle库的简单使用
_Ocean__
python开发语言
pickle是Python中用于序列化和反序列化对象的标准库。它可以将对象转换为字节流,以便在存储或传输过程中使用,也可以将字节流重新转换回原始对象。基本使用方法如下:序列化对象:将对象转换为字节流的过程称为序列化。可以使用pickle.dump()函数将对象序列化并写入文件,或使用pickle.dumps()函数将对象序列化为字节流。pickle.dump(obj,file):将对象 obj 序
- Tenserflow学习笔记 【一:Python入门】
邪魔小屁屁
神经网络与深度学习python数据结构机器学习
Python序列数据结构初习一.前言Python的两种主要的序列数据类型二.关于序列的相关操作1.索引2.切片[开始位置:结束位置]3.获取长度len()4.添加元素①append()②insert(a,b)5.合并列表①extend()②‘+’6.删除元素del6.排序7.遍历序列8.字典①遍历②添加、修改指定元素的取值③合并字典update()④删除字典中的元素9.集合(略)总结一.前言Pyt
- *python中的字符串
菜鸡且菜鸡
计算机基础#pythonpython
什么是字符串,字符串的格式多个字符就是字符串.格式:变量名='字符串'或者:变量名="字符串"#例如:name='张三'des='张三是个万能的名字'password='123456'#......都需要用字符串来存储字符串格式化详见里面的格式化输出字符串的下标索引下标==索引字符串:我喜欢你下标索引:0123str='我喜欢你'print(str[0]) #根据下标将字符取出:我print(s
- python 类属性 实例属性_类属性和实例属性
weixin_39747615
python类属性实例属性
类属性和实例属性下表列出了4个常见的明星人物:姓名年龄周润发58成龙55刘德华53周星驰54进行归纳总结:这些人物具有较高的知名度,把这些人物归类为明星。每个明星两个属性:姓名和年龄。明星这个群体具有一个属性:数量,在这张表格中,明星的数量是4。姓名和年龄等属性是用于描述具体的一个对象(例如:周润发),而人物的数量是用于描述明星这个类别。如果使用面向对象技术对以上实体进行描述,周润发、成龙、刘德华
- Python环境搭建与量化交易开发入门指南
量化投资技术
量化科普Python量化miniQMTQMT量化交易量化投资
Python环境搭建与量化交易开发入门指南在量化交易领域,Python因其强大的数据处理能力和丰富的库支持而成为首选编程语言。本文将指导您如何在本地搭建一个适合量化交易的Python环境,并介绍一些常用的代码编辑器和工具。《QMT开通规则分享》更多内容,知识星球搜索:数据与交易Python安装方式一:官网安装(推荐)首先,访问Python官网下载适合的版本。由于xtquant库目前最高支持到Pyt
- 自动驾驶技术的未来趋势与挑战分析
智能计算研究中心
其他
内容概要自动驾驶技术自诞生以来经历了多个发展阶段。最初的研究集中在感知和控制系统的基础构建,随后进入了数据处理和算法的优化阶段,如今,随着人工智能和机器学习技术的快速应用,自动驾驶行业正处于一个前所未有的迅猛发展期。当前,行业内涌现出多种解决方案,各大汽车制造商与科技公司纷纷加大投入,推动这一领域的技术进步。市场需求不断增加,为自动驾驶技术注入活力。城市交通拥堵、环境污染等问题促使人们寻求更加智能
- DataWhale 数学建模导论学习笔记(第一章)
ryanYu_127
学习笔记
要点:利用Python作为计算工具帮助解决数学模型。一、前期准备工作1.AnacondaNavigator帮助安装了NumPy所需的功能包。2.通过Jupyter_Lab,可以直接测试代码运行的结果。3.通过vscode可以修改文本并即时看到预览结果,解决一些符号、公式、表格显示不正常的问题。4.这也是我第一次使用CSDN记录自己的学习笔记。二、进入第一章正题解析方法与几何建模:1.前面的向量和矩
- Spring中@Value注解,需要注意的地方
无量
springbean@Valuexml
Spring 3以后,支持@Value注解的方式获取properties文件中的配置值,简化了读取配置文件的复杂操作
1、在applicationContext.xml文件(或引用文件中)中配置properties文件
<bean id="appProperty"
class="org.springframework.beans.fac
- mongoDB 分片
开窍的石头
mongodb
mongoDB的分片。要mongos查询数据时候 先查询configsvr看数据在那台shard上,configsvr上边放的是metar信息,指的是那条数据在那个片上。由此可以看出mongo在做分片的时候咱们至少要有一个configsvr,和两个以上的shard(片)信息。
第一步启动两台以上的mongo服务
&nb
- OVER(PARTITION BY)函数用法
0624chenhong
oracle
这篇写得很好,引自
http://www.cnblogs.com/lanzi/archive/2010/10/26/1861338.html
OVER(PARTITION BY)函数用法
2010年10月26日
OVER(PARTITION BY)函数介绍
开窗函数 &nb
- Android开发中,ADB server didn't ACK 解决方法
一炮送你回车库
Android开发
首先通知:凡是安装360、豌豆荚、腾讯管家的全部卸载,然后再尝试。
一直没搞明白这个问题咋出现的,但今天看到一个方法,搞定了!原来是豌豆荚占用了 5037 端口导致。
参见原文章:一个豌豆荚引发的血案——关于ADB server didn't ACK的问题
简单来讲,首先将Windows任务进程中的豌豆荚干掉,如果还是不行,再继续按下列步骤排查。
&nb
- canvas中的像素绘制问题
换个号韩国红果果
JavaScriptcanvas
pixl的绘制,1.如果绘制点正处于相邻像素交叉线,绘制x像素的线宽,则从交叉线分别向前向后绘制x/2个像素,如果x/2是整数,则刚好填满x个像素,如果是小数,则先把整数格填满,再去绘制剩下的小数部分,绘制时,是将小数部分的颜色用来除以一个像素的宽度,颜色会变淡。所以要用整数坐标来画的话(即绘制点正处于相邻像素交叉线时),线宽必须是2的整数倍。否则会出现不饱满的像素。
2.如果绘制点为一个像素的
- 编码乱码问题
灵静志远
javajvmjsp编码
1、JVM中单个字符占用的字节长度跟编码方式有关,而默认编码方式又跟平台是一一对应的或说平台决定了默认字符编码方式;2、对于单个字符:ISO-8859-1单字节编码,GBK双字节编码,UTF-8三字节编码;因此中文平台(中文平台默认字符集编码GBK)下一个中文字符占2个字节,而英文平台(英文平台默认字符集编码Cp1252(类似于ISO-8859-1))。
3、getBytes()、getByte
- java 求几个月后的日期
darkranger
calendargetinstance
Date plandate = planDate.toDate();
SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd");
Calendar cal = Calendar.getInstance();
cal.setTime(plandate);
// 取得三个月后时间
cal.add(Calendar.M
- 数据库设计的三大范式(通俗易懂)
aijuans
数据库复习
关系数据库中的关系必须满足一定的要求。满足不同程度要求的为不同范式。数据库的设计范式是数据库设计所需要满足的规范。只有理解数据库的设计范式,才能设计出高效率、优雅的数据库,否则可能会设计出错误的数据库.
目前,主要有六种范式:第一范式、第二范式、第三范式、BC范式、第四范式和第五范式。满足最低要求的叫第一范式,简称1NF。在第一范式基础上进一步满足一些要求的为第二范式,简称2NF。其余依此类推。
- 想学工作流怎么入手
atongyeye
jbpm
工作流在工作中变得越来越重要,很多朋友想学工作流却不知如何入手。 很多朋友习惯性的这看一点,那了解一点,既不系统,也容易半途而废。好比学武功,最好的办法是有一本武功秘籍。研究明白,则犹如打通任督二脉。
系统学习工作流,很重要的一本书《JBPM工作流开发指南》。
本人苦苦学习两个月,基本上可以解决大部分流程问题。整理一下学习思路,有兴趣的朋友可以参考下。
1 首先要
- Context和SQLiteOpenHelper创建数据库
百合不是茶
androidContext创建数据库
一直以为安卓数据库的创建就是使用SQLiteOpenHelper创建,但是最近在android的一本书上看到了Context也可以创建数据库,下面我们一起分析这两种方式创建数据库的方式和区别,重点在SQLiteOpenHelper
一:SQLiteOpenHelper创建数据库:
1,SQLi
- 浅谈group by和distinct
bijian1013
oracle数据库group bydistinct
group by和distinct只了去重意义一样,但是group by应用范围更广泛些,如分组汇总或者从聚合函数里筛选数据等。
譬如:统计每id数并且只显示数大于3
select id ,count(id) from ta
- vi opertion
征客丶
macoprationvi
进入 command mode (命令行模式)
按 esc 键
再按 shift + 冒号
注:以下命令中 带 $ 【在命令行模式下进行】,不带 $ 【在非命令行模式下进行】
一、文件操作
1.1、强制退出不保存
$ q!
1.2、保存
$ w
1.3、保存并退出
$ wq
1.4、刷新或重新加载已打开的文件
$ e
二、光标移动
2.1、跳到指定行
数字
- 【Spark十四】深入Spark RDD第三部分RDD基本API
bit1129
spark
对于K/V类型的RDD,如下操作是什么含义?
val rdd = sc.parallelize(List(("A",3),("C",6),("A",1),("B",5))
rdd.reduceByKey(_+_).collect
reduceByKey在这里的操作,是把
- java类加载机制
BlueSkator
java虚拟机
java类加载机制
1.java类加载器的树状结构
引导类加载器
^
|
扩展类加载器
^
|
系统类加载器
java使用代理模式来完成类加载,java的类加载器也有类似于继承的关系,引导类是最顶层的加载器,它是所有类的根加载器,它负责加载java核心库。当一个类加载器接到装载类到虚拟机的请求时,通常会代理给父类加载器,若已经是根加载器了,就自己完成加载。
虚拟机区分一个Cla
- 动态添加文本框
BreakingBad
文本框
<script> var num=1; function AddInput() { var str=""; str+="<input
- 读《研磨设计模式》-代码笔记-单例模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
public class Singleton {
}
/*
* 懒汉模式。注意,getInstance如果在多线程环境中调用,需要加上synchronized,否则存在线程不安全问题
*/
class LazySingleton
- iOS应用打包发布常见问题
chenhbc
iosiOS发布iOS上传iOS打包
这个月公司安排我一个人做iOS客户端开发,由于急着用,我先发布一个版本,由于第一次发布iOS应用,期间出了不少问题,记录于此。
1、使用Application Loader 发布时报错:Communication error.please use diagnostic mode to check connectivity.you need to have outbound acc
- 工作流复杂拓扑结构处理新思路
comsci
设计模式工作算法企业应用OO
我们走的设计路线和国外的产品不太一样,不一样在哪里呢? 国外的流程的设计思路是通过事先定义一整套规则(类似XPDL)来约束和控制流程图的复杂度(我对国外的产品了解不够多,仅仅是在有限的了解程度上面提出这样的看法),从而避免在流程引擎中处理这些复杂的图的问题,而我们却没有通过事先定义这样的复杂的规则来约束和降低用户自定义流程图的灵活性,这样一来,在引擎和流程流转控制这一个层面就会遇到很
- oracle 11g新特性Flashback data archive
daizj
oracle
1. 什么是flashback data archive
Flashback data archive是oracle 11g中引入的一个新特性。Flashback archive是一个新的数据库对象,用于存储一个或多表的历史数据。Flashback archive是一个逻辑对象,概念上类似于表空间。实际上flashback archive可以看作是存储一个或多个表的所有事务变化的逻辑空间。
- 多叉树:2-3-4树
dieslrae
树
平衡树多叉树,每个节点最多有4个子节点和3个数据项,2,3,4的含义是指一个节点可能含有的子节点的个数,效率比红黑树稍差.一般不允许出现重复关键字值.2-3-4树有以下特征:
1、有一个数据项的节点总是有2个子节点(称为2-节点)
2、有两个数据项的节点总是有3个子节点(称为3-节
- C语言学习七动态分配 malloc的使用
dcj3sjt126com
clanguagemalloc
/*
2013年3月15日15:16:24
malloc 就memory(内存) allocate(分配)的缩写
本程序没有实际含义,只是理解使用
*/
# include <stdio.h>
# include <malloc.h>
int main(void)
{
int i = 5; //分配了4个字节 静态分配
int * p
- Objective-C编码规范[译]
dcj3sjt126com
代码规范
原文链接 : The official raywenderlich.com Objective-C style guide
原文作者 : raywenderlich.com Team
译文出自 : raywenderlich.com Objective-C编码规范
译者 : Sam Lau
- 0.性能优化-目录
frank1234
性能优化
从今天开始笔者陆续发表一些性能测试相关的文章,主要是对自己前段时间学习的总结,由于水平有限,性能测试领域很深,本人理解的也比较浅,欢迎各位大咖批评指正。
主要内容包括:
一、性能测试指标
吞吐量、TPS、响应时间、负载、可扩展性、PV、思考时间
http://frank1234.iteye.com/blog/2180305
二、性能测试策略
生产环境相同 基准测试 预热等
htt
- Java父类取得子类传递的泛型参数Class类型
happyqing
java泛型父类子类Class
import java.lang.reflect.ParameterizedType;
import java.lang.reflect.Type;
import org.junit.Test;
abstract class BaseDao<T> {
public void getType() {
//Class<E> clazz =
- 跟我学SpringMVC目录汇总贴、PDF下载、源码下载
jinnianshilongnian
springMVC
----广告--------------------------------------------------------------
网站核心商详页开发
掌握Java技术,掌握并发/异步工具使用,熟悉spring、ibatis框架;
掌握数据库技术,表设计和索引优化,分库分表/读写分离;
了解缓存技术,熟练使用如Redis/Memcached等主流技术;
了解Ngin
- the HTTP rewrite module requires the PCRE library
流浪鱼
rewrite
./configure: error: the HTTP rewrite module requires the PCRE library.
模块依赖性Nginx需要依赖下面3个包
1. gzip 模块需要 zlib 库 ( 下载: http://www.zlib.net/ )
2. rewrite 模块需要 pcre 库 ( 下载: http://www.pcre.org/ )
3. s
- 第12章 Ajax(中)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Optimize query with Query Stripping in Web Intelligence
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Optimize+query+with+Query+Stripping+in+Web+Intelligence
and a very straightfoward video
http://www.sdn.sap.com/irj/scn/events?rid=/library/uuid/40ec3a0c-936
- Java开发者写SQL时常犯的10个错误
tomcat_oracle
javasql
1、不用PreparedStatements 有意思的是,在JDBC出现了许多年后的今天,这个错误依然出现在博客、论坛和邮件列表中,即便要记住和理解它是一件很简单的事。开发者不使用PreparedStatements的原因可能有如下几个: 他们对PreparedStatements不了解 他们认为使用PreparedStatements太慢了 他们认为写Prepar
- 世纪互联与结盟有感
阿尔萨斯
10月10日,世纪互联与(Foxcon)签约成立合资公司,有感。
全球电子制造业巨头(全球500强企业)与世纪互联共同看好IDC、云计算等业务在中国的增长空间,双方迅速果断出手,在资本层面上达成合作,此举体现了全球电子制造业巨头对世纪互联IDC业务的欣赏与信任,另一方面反映出世纪互联目前良好的运营状况与广阔的发展前景。
众所周知,精于电子产品制造(世界第一),对于世纪互联而言,能够与结盟