Hadoop-- MapReduce简单理解

1.Hadoop和MapReduce概念

  1. Mapreduce是一种模式。
  2. Hadoop是一种框架。
  3. Hadoop是一个实现了mapreduce模式的开源的分布式并行编程框架。
2.Hadoop框架
 
Hadoop-- MapReduce简单理解
 
借助Hadoop 框架及云计算核心技术MapReduce 来实现数据的计算和存储,并且将HDFS 分布式文件系统和HBase 分布式数据库很好的融入到云计算框架中,从而实现云计算的分布式、并行计算和存储,并且得以实现很好的处理大规模数据的能力。
 
3.MapReduce 原理
 
3.1 map和reduce函数
map函数和reduce函数是交给用户实现的,这两个函数定义了任务本身。
  • map函数:接受一个键值对(key-value pair),产生一组中间键值对。MapReduce框架会将map函数产生的中间键值对里键相同的值传递给一个reduce函数
  • reduce函数:接受一个键,以及相关的一组值,将这组值进行合并产生一组规模更小的值(通常只有一个或零个值)。(一个reduce对应一个key
 
统计词频的MapReduce函数的核心代码非常简短,主要就是实现这两个函数。
 
Hadoop-- MapReduce简单理解
 
       为了理清map函数和reduce函数的作用,在统计词频的例子里,
      1)map函数接受的键是文件名,值是文件的内容,map逐个遍历单词,每遇到一个单词w,就产生一个中间键值对<w, "1">,这表示单词w咱又找到了一个;
      2)MapReduce将键相同(都是单词w)的键值对传给reduce函数,这样reduce函数接受的键就是单词w,值是一串"1"(最基本的实现是这样,但可以优化),个数等于键为w的键值对的个数,然后将这些“1”累加就得到单词w的出现次数。最后这些单词的出现次数会被写到用户定义的位置,存储在底层的分布式存储系统(GFS或HDFS)。

 

 
3.2 工作原理
Hadoop-- MapReduce简单理解
 
1) MapReduce库先把user program的输入文件划分为M份(M为用户定义),每一份通常有16MB到64MB,如图左方所示分成了split0~4;然后使用fork将用户进程拷贝到集群内其它机器上。
2) user program的副本中有一个称为master,其余称为worker,master是负责调度的,为空闲worker分配作业(Map作业或者Reduce作业),worker的数量也是可以由用户指定的。
3)  被分配了Map作业的worker,开始读取对应分片的输入数据,Map作业数量是由M决定的,和split一一对应;Map作业从输入数据中抽取出键值对,每一个键值对都作为参数传递给map函数,map函数产生的中间键值对被缓存在内存中。( 也就是不做重复工作 )。
4)  缓存的中间键值对会被定期写入本地磁盘,而且被分为R个区,R的大小是由用户定义的,将来每个区会对应一个Reduce作业;这些中间键值对的位置会被通报给master,master负责将信息转发给Reduce worker。
5)master通知分配了Reduce作业的worker它负责的分区在什么位置(肯定不止一个地方,每个Map作业产生的中间键值对都可能映射到所有R个不同分区),当Reduce worker把所有它负责的中间键值对都读过来后,先对它们进行排序,使得相同键的键值对聚集在一起。因为不同的键可能会映射到同一个分区也就是同一个Reduce作业(谁让分区少呢),所以排序是必须的。
6)reduce worker遍历排序后的中间键值对,对于每个唯一的键,都将键与关联的值传递给reduce函数,reduce函数产生的输出会添加到这个分区的输出文件中。
7) 当所有的Map和Reduce作业都完成了,master唤醒正版的user program,MapReduce函数调用返回user program的代码。
 
其中对于reduce部分需要更详细的理解,参见下图:
Hadoop-- MapReduce简单理解
说明: 从图中有几点需要注意:
   1) map后个节点(机器)被映射到2个(R)区域块中(在字频统计中,每块要统计的一个单词),接下来我们可以看到不同的块被不同的reduce work去处理。
   2) reduce在处理的时候,每个reduce work都需要再内部进行排序,一般采用merge。
      所有执行完毕后,MapReduce输出放在了R个分区的输出文件中(分别对应一个Reduce作业)。用户通常并不需要合并这R个文件,而是将其作为输入交给另一个MapReduce程序处理。整个过程中,输入数据是来自底层分布式文件系统(GFS)的,中间数据是放在本地文件系统的,最终输出数据是写入底层分布式文件系统(GFS)的。而且我们要注意Map/Reduce作业和map/reduce函数的区别:Map作业处理一个输入数据的分片,可能需要调用多次map函数来处理每个输入键值对;Reduce作业处理一个分区的中间键值对,期间要对每个不同的键调用一次reduce函数,Reduce作业最终也对应一个输出文件。
 
更细致的单词词频统计参见:
Hadoop-- MapReduce简单理解
 
 
参见:

 
 





你可能感兴趣的:(mapreduce)