- 柑橘叶子病害检测数据集VOC+YOLO格900张3类别
FL1623863129
数据集YOLO深度学习机器学习
数据集格式:PascalVOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)图片数量(jpg文件个数):900标注数量(xml文件个数):900标注数量(txt文件个数):900标注类别数:3标注类别名称(注意yolo格式类别顺序不和这个对应,而以labels文件夹classes.txt为准):["canker","kar
- 三种方式实现人车流统计(yolov5+opencv+deepsort+bytetrack+iou)
Jayson God
人工智能c++yolov5opencv算法人工智能
一、运行环境1、项目运行环境如下2、CPU配置3、GPU配置如果没有GPUyolov5目标检测时间会比较久二、编程语言与使用库版本项目编程语言使用c++,使用的第三方库,onnxruntime-linux-x64-1.12.1,opencv-4.6.0opencv官方地址Releases-OpenCVopencvgithub地址https://github.com/opencv/opencv/tr
- 从养殖场到科技前沿:YOLOv11+OpenCV精准计数鸡蛋与鸡
星际编程喵
Python探索之旅YOLOopencv人工智能python目标检测计算机视觉
前言谁能想到,鸡蛋和鸡的计数居然能变成一项高科技活儿?想象一下,早上去市场,卖家把鸡蛋摔得稀巴烂,结果鸡蛋滚得到处都是——难道你就得一个个捡回来数?还得小心别弄错?可是,你又不是超人!别担心,科技来帮忙!今天的主角是YOLOv11和OpenCV,它们是计算机视觉领域的两位大佬,专门为你解决这一难题。无论是鸡蛋还是鸡,它们都能精准识别,数得清清楚楚。不信?那我们就一起去看看怎么用这对“黄金搭档”解决
- YOLOv11 火焰识别:智能时代的火灾预警新利器
星际编程喵
Python探索之旅YOLOpython目标检测机器学习人工智能开发语言
前言随着人工智能(AI)在各个领域如火如荼发展,图像识别技术也跟着飞速进步。从最初的传统算法到如今的深度学习模型,图像识别在准确性和效率上提升令人惊叹。而在这场技术革命中,YOLO(YouOnlyLookOnce)系列模型无疑扮演举足轻重的角色。今天,我们将目光聚焦在最新的版本——YOLOv11。别误会,YOLOv11可不是什么随便升级。它远不止数字上多了个“1”那么简单。YOLOv11集成许多先
- AI:236-基于RCS-OSA的YOLOv8改进 | 增强空间对象注意力实现小物体检测精度提升
一键难忘
精通AI实战千例专栏合集人工智能YOLO目标跟踪RCS-OSA
本文收录于专栏:精通AI实战千例专栏合集https://blog.csdn.net/weixin_52908342/category_11863492.html从基础到实践,深入学习。无论你是初学者还是经验丰富的老手,对于本专栏案例和项目实践都有参考学习意义。每一个案例都附带关键代码,详细讲解供大家学习,希望可以帮到大家。正在不断更新中~文章目录1.通过RCS-OSA替换C2f实现暴力涨点2.理论
- YOLOv1 损失函数
余将董道而不豫兮
YOLO神经网络python深度学习人工智能机器学习计算机视觉
相关文章YOLOv1论文简要YOLOv1数据集加载YOLOv1损失函数YOLOv1模型构建与训练YOLOv1目标检测项目地址:YOLOv1VOC2007笔者训练的权重地址:阿里云盘分享10秒文章速览对于YOLOv1的损失函数,使用Python程序实现损失函数的计算关于损失函数的计算,在《YOLOv1论文简要》一文中已经进行了较详细的解释。只不过,在本文中,需要以代码的形式表达出来平方和误差在YOL
- labelme转YOLOv8、YOLOv5 标签格式 标注数据
一颗小树x
YOLO目标检测实践应用labelmeYOLOv8YOLOv5标签格式标注数据
前言本文分析将labelme的标签,转为YOLOv8、YOLOv5的格式,实现模型训练。首先了解YOLOv8和YOLOv5标签格式,然后了解labelme标签格式,最近实现数据格式转换。1、YOLOv8和YOLOv5标签格式YOLOv8的标签格式与YOLOv5基本相同,使用一种简单的txt文本格式,来存储每个图像的标注数据。每个图像对应一个文本文件,这些文本文件与图像文件位于同一目录并且具有相同的
- yolov8(8.2.10)+deepsort(demo)
fengsongdehappy
YOLO
只需要训练好yolov8的检测模型然后调用:results=model.track(frame,persist=True)#执行跟踪,persist=True表示持续跟踪。保持同一个人在多帧画面的id一就可以完整代码:importcv2importnumpyasnpfromultralyticsimportYOLOfromcollectionsimportdefaultdict#框的中心点的历史轨
- YOLOv8中Bottleneck模块详解
王了了哇
YOLO计算机视觉深度学习pytorchpython
1.Bottleneck模块介绍Bottleneck模块在YOLOv8中的作用是进行特征提取和增强,是网络中的核心构建模块之一。它的主要功能是通过卷积操作来处理输入特征图,并在适当情况下应用残差连接,使得信息能够有效地通过网络层进行传播。2.Bottleneck模块的位置和作用在YOLOv8的网络结构中,Bottleneck模块被多次使用,主要出现在以下几个部分:Backbone部分:在多个层次上
- 使用 YOLOv8 模型分析摄像头的图像
欣然~
YOLO
在Python中使用YOLOv8模型分析摄像头的图像并进行分类。1.安装依赖库首先,你需要安装ultralytics库,它提供了YOLOv8的PythonAPI。可以使用以下命令进行安装:bashpipinstallultralytics2.编写Python代码以下是一个使用YOLOv8模型对摄像头图像进行分类的示例代码:importcv2fromultralyticsimportYOLO#加载预
- 【YOLO】常用脚本
我才是真正的17号
脚本YOLO人工智能深度学习
目录VOC转YOLO划分训练集、测试集与验证集VOC转YOLOimportosimportxml.etree.ElementTreeasETdefconvert(size,box):dw=1./size[0]dh=1./size[1]x=(box[0]+box[1])/2.0y=(box[2]+box[3])/2.0w=box[1]-box[0]h=box[3]-box[2]x=x*dww=w*d
- yolo使用的一些脚本
一休哥※
YOLO深度学习python
合并yolo标注label输入两个路径的labels,可以特定的32类别的标注合并到target_dir目录中的txt中#-*-coding:utf-8-*-#@Time:2024/6/1917:57#@Author:sjh#@Site:#@File:python_txt.py#@Comment:importos#定义源目录和目标目录source_dir=r"E:\Download\Dataset
- yolo数据增强
攀神
YOLOpython开发语言
importosimportcv2importnumpyasnpimportalbumentationsasA#定义数据增强的变换,可以根据需要自定义transform=A.Compose([A.HorizontalFlip(p=0.5),#水平翻转A.RandomBrightnessContrast(p=0.5),#随机亮度和对比度A.Rotate(limit=15,p=0.5),#随机旋转A.
- 基于深度学习YOLOv5的活体人脸检测系统(Python+PySide6界面+训练代码)
深度学习&目标检测实战项目
深度学习YOLOpython人工智能目标跟踪计算机视觉开发语言
一、前言随着人工智能技术的快速发展,计算机视觉(ComputerVision)已广泛应用于各种实际场景中,特别是在安全、金融、医疗等领域。人脸识别作为计算机视觉的一个重要应用,已经成为很多身份验证、安防监控、智能门禁等系统的核心技术。近年来,随着深度学习的突破,YOLO(YouOnlyLookOnce)系列算法因其高效、准确、实时的特点,广泛应用于物体检测任务。在实际的人脸识别应用中,活体人脸检测
- 【深度学习】YOLO-World: Real-Time Open-Vocabulary Object Detection,目标检测
XD742971636
深度学习机器学习深度学习YOLO目标检测
介绍一个酷炫的目标检测方式:论文:https://arxiv.org/abs/2401.17270代码:https://github.com/AILab-CVC/YOLO-World文章目录摘要Introduction第2章相关工作2.1传统目标检测2.2开放词汇目标检测第3章方法3.1预训练公式:区域-文本对3.2模型架构3.3可重参数化的视觉-语言路径聚合网络(RepVL-PAN)3.4预训练
- Python知识点:基于Python技术,如何使用YOLO进行实时物体检测
超哥同学
Python系列pythonYOLO开发语言面试编程
开篇,先说一个好消息,截止到2025年1月1日前,翻到文末找到我,赠送定制版的开题报告和任务书,先到先得!过期不候!使用YOLO进行实时物体检测的Python技术详解实时物体检测是计算机视觉中的一个关键任务,它要求算法能够快速且准确地识别和定位图像或视频流中的物体。YOLO(YouOnlyLookOnce)算法因其速度快、性能高而受到广泛关注。在本文中,我们将详细介绍如何使用Python和YOLO
- 基于深度学习YOLOv8的海洋动物检测系统(Python+PySide6界面+训练代码)
深度学习&目标检测实战项目
深度学习YOLOpython目标检测人工智能开发语言
引言近年来,计算机视觉技术在各行各业中得到了广泛的应用,特别是在智能监控、自动驾驶、医疗诊断等领域。深度学习,尤其是卷积神经网络(CNN)的出现,极大地提高了计算机处理图像和视频的能力。在这一领域,YOLO(YouOnlyLookOnce)系列模型以其高效且准确的目标检测能力,成为了当下最为流行的深度学习模型之一。在海洋生物保护、海洋环境监测等应用中,快速识别和检测海洋动物种类对于科学研究和保护工
- 基于YOLOv5深度学习的木材表面缺陷检测系统:UI界面 + YOLOv5 + 数据集详细教程
深度学习&目标检测实战项目
YOLO深度学习uiYOLOv5人工智能计算机视觉
随着工业自动化的发展,木材加工行业对产品质量的要求日益提高。木材表面缺陷的检测是确保产品质量的重要环节。传统的人工检测方式不仅费时费力,而且容易受到人为因素的影响。基于深度学习的目标检测技术,尤其是YOLOv5,凭借其优越的实时性和准确性,成为木材表面缺陷检测的有效工具。本博客将详细介绍如何构建一个基于YOLOv5的木材表面缺陷检测系统,包括数据集准备、模型训练、UI界面开发及完整代码实现。目录目
- 还没搞懂YOLO v7,YOLO v8已经来了!
沃恩智慧
目标检测深度学习计算机视觉
YOLO系列又双叒更新!只能说,YOLO系列发展地真快,已经有点跟不上了!YOLOv1-YOLOv8系列回顾YOLOv1:2015年JosephRedmon和AliFarhadi等人(华盛顿大学)YOLOv2:2016年JosephRedmon和AliFarhadi等人(华盛顿大学)YOLOv3:2018年JosephRedmon和AliFarhadi等人(华盛顿大学)YOLOv4:2020年Al
- 【git-hub项目:YOLOs-CPP】本地实现01:项目构建
认识祂
CV计算机视觉gitcppYOLOs-CPP模型部署人工智能
目录写在前面项目介绍最新发布说明Segmentation示例功能特点依赖项安装克隆代码仓库配置构建项目写在前面前面刚刚实现的系列文章:【Windows/C++/yolo开发部署01】【Windows/C++/yolo开发部署02】【Windows/C++/yolo开发部署03】【Windows/C++/yolo开发部署04】【Windows/C++/yolo开发部署05】必须用nividia显卡的
- YOLOv11-ultralytics-8.3.67部分代码阅读笔记-patches.py
红色的山茶花
YOLO笔记深度学习
patches.pyultralytics\utils\patches.py目录patches.py1.所需的库和模块2.defimread(filename:str,flags:int=cv2.IMREAD_COLOR):3.defimwrite(filename:str,img:np.ndarray,params=None):4.defimshow(winname:str,mat:np.nda
- 模型实战(19)之 从头搭建yolov9环境+tensorrt部署+CUDA前处理 -> 实现目标检测
明月醉窗台
#深度学习实战例程目标检测人工智能计算机视觉图像处理YOLO
从头搭建yolov9环境+tensorrt部署实现目标检测yolov9虚拟环境搭建实现训练、推理与导出导出onnx并转为tensorrt模型Python\C++-trt实现推理,CUDA实现图像前处理文中将给出详细实现源码python、C++效果如下:output_video_11.搭建环境拉下官方代码根据配置下载虚拟环境所需包详细步骤如下:
- rk3588部署yolov8视频目标检测教程
今夕是何年,
视觉算法部署YOLO目标检测人工智能
目录1.环境配置1.1训练和导出onnx环境(电脑端执行)1.2导出rknn环境(电脑端执行)2.训练部分(电脑端执行)2.1训练脚本(电脑端执行)3.onnx转rknn(电脑端执行)1.环境配置1.1训练和导出onnx环境(电脑端执行)#使用conda创建一个python环境condacreate-ntorchpython=3.9#激活环境condaactivatetorch#安装yolov8p
- YOLO各版本原理和优缺点解析
Ash Butterfield
计算机视觉
YOLO(YouOnlyLookOnce)是一种实时目标检测算法,以其高速度和较高精度著称。以下是各版本的详细介绍及优缺点分析:1.YOLOv1(2016年)原理:将输入图像划分为S×SS\timesSS×S的网格,每个网格预测多个边界框和类别置信度。使用单个神经网络直接对图像进行前向传播预测边界框和类别标签。优点:速度快,适合实时应用。模型结构简单,易于实现和训练。缺点:对小目标检测效果差,容易
- 学习系列二:常用目标检测的格式转换脚本文件txt,json等
小啊磊_Vv
目标检测YOLO人工智能计算机视觉json
常用目标检测的格式转换脚本文件txt,json等文章目录常用目标检测的格式转换脚本文件txt,json等前言一、json格式转yolo的txt格式二、yolov8的关键点labelme打的标签json格式转可训练的txt格式三、yolo的目标检测txt格式转coco数据集标签的json格式四、xml格式转yolo数据集标签的txt格式五、根据yolo的目标检测训练的最好权重推理图片六、根据yolo
- 【目标检测】YOLO格式数据集txt标注转换为COCO格式JSON
ericdiii
目标检测目标检测YOLOjson
YOLO格式数据集:images|--train|--test|--vallabels|--train|--test|--val代码:importosimportjsonfromPILimportImage#设置数据集路径dataset_path="path/to/your/dataset"images_path=os.path.join(dataset_path,"images")labels_
- 目标检测:yolo格式txt转换成COCO格式json
詹姆斯德
格式转换目标检测YOLOjson
修改对应文件路径即可,其他根据txt或者希望生成的json做轻微调整#-*-coding:utf-8-*-importosimportjsonfromPILimportImagecoco_format_save_path="/home/admin1/data/LVIS"#要生成的标准coco格式标签所在文件夹yolo_format_classes_path="/home/admin1/data/L
- YOLOv11-ultralytics-8.3.67部分代码阅读笔记-ops.py
红色的山茶花
YOLO笔记深度学习
ops.pyultralytics\utils\ops.py目录ops.py1.所需的库和模块2.classProfile(contextlib.ContextDecorator):3.defsegment2box(segment,width=640,height=640):4.defscale_boxes(img1_shape,boxes,img0_shape,ratio_pad=None,pa
- 基于深度学习YOLOv5的海洋动物检测系统
深度学习&目标检测实战项目
深度学习YOLO目标跟踪人工智能目标检测计算机视觉
1.引言随着人工智能技术的快速发展,深度学习在图像处理领域的应用逐渐展现出强大的能力,尤其是在目标检测任务上。YOLO(YouOnlyLookOnce)系列模型作为一种高效的目标检测算法,以其实时性和高精度在许多领域得到了广泛应用。海洋动物的检测任务也因此受益,借助深度学习模型,我们可以实时、自动地检测海洋中的动物,有助于海洋生态研究、环境保护以及水下监测等多个领域。本文将详细介绍如何基于YOLO
- 基于YOLOv5、YOLOv8和YOLOv10的车站行李监控系统:深度学习应用与实现
深度学习&目标检测实战项目
YOLO深度学习人工智能目标检测目标跟踪
引言在现代车站,行李监控是一项至关重要的安全任务。随着交通安全要求的不断提高,尤其是在车站等人流密集的场所,及时检测和识别行李不仅有助于防止行李遗失或误取,还能有效地减少潜在的安全威胁。传统的人工检查方法已经无法满足快速响应和高精度的需求,而基于深度学习的目标检测技术,特别是YOLO(YouOnlyLookOnce)系列算法,成为了高效解决此类问题的理想选择。YOLO系列算法(包括YOLOv5、Y
- 分享100个最新免费的高匿HTTP代理IP
mcj8089
代理IP代理服务器匿名代理免费代理IP最新代理IP
推荐两个代理IP网站:
1. 全网代理IP:http://proxy.goubanjia.com/
2. 敲代码免费IP:http://ip.qiaodm.com/
120.198.243.130:80,中国/广东省
58.251.78.71:8088,中国/广东省
183.207.228.22:83,中国/
- mysql高级特性之数据分区
annan211
java数据结构mongodb分区mysql
mysql高级特性
1 以存储引擎的角度分析,分区表和物理表没有区别。是按照一定的规则将数据分别存储的逻辑设计。器底层是由多个物理字表组成。
2 分区的原理
分区表由多个相关的底层表实现,这些底层表也是由句柄对象表示,所以我们可以直接访问各个分区。存储引擎管理分区的各个底层
表和管理普通表一样(所有底层表都必须使用相同的存储引擎),分区表的索引只是
- JS采用正则表达式简单获取URL地址栏参数
chiangfai
js地址栏参数获取
GetUrlParam:function GetUrlParam(param){
var reg = new RegExp("(^|&)"+ param +"=([^&]*)(&|$)");
var r = window.location.search.substr(1).match(reg);
if(r!=null
- 怎样将数据表拷贝到powerdesigner (本地数据库表)
Array_06
powerDesigner
==================================================
1、打开PowerDesigner12,在菜单中按照如下方式进行操作
file->Reverse Engineer->DataBase
点击后,弹出 New Physical Data Model 的对话框
2、在General选项卡中
Model name:模板名字,自
- logbackのhelloworld
飞翔的马甲
日志logback
一、概述
1.日志是啥?
当我是个逗比的时候我是这么理解的:log.debug()代替了system.out.print();
当我项目工作时,以为是一堆得.log文件。
这两天项目发布新版本,比较轻松,决定好好地研究下日志以及logback。
传送门1:日志的作用与方法:
http://www.infoq.com/cn/articles/why-and-how-log
上面的作
- 新浪微博爬虫模拟登陆
随意而生
新浪微博
转载自:http://hi.baidu.com/erliang20088/item/251db4b040b8ce58ba0e1235
近来由于毕设需要,重新修改了新浪微博爬虫废了不少劲,希望下边的总结能够帮助后来的同学们。
现行版的模拟登陆与以前相比,最大的改动在于cookie获取时候的模拟url的请求
- synchronized
香水浓
javathread
Java语言的关键字,可用来给对象和方法或者代码块加锁,当它锁定一个方法或者一个代码块的时候,同一时刻最多只有一个线程执行这段代码。当两个并发线程访问同一个对象object中的这个加锁同步代码块时,一个时间内只能有一个线程得到执行。另一个线程必须等待当前线程执行完这个代码块以后才能执行该代码块。然而,当一个线程访问object的一个加锁代码块时,另一个线程仍然
- maven 简单实用教程
AdyZhang
maven
1. Maven介绍 1.1. 简介 java编写的用于构建系统的自动化工具。目前版本是2.0.9,注意maven2和maven1有很大区别,阅读第三方文档时需要区分版本。 1.2. Maven资源 见官方网站;The 5 minute test,官方简易入门文档;Getting Started Tutorial,官方入门文档;Build Coo
- Android 通过 intent传值获得null
aijuans
android
我在通过intent 获得传递兑现过的时候报错,空指针,我是getMap方法进行传值,代码如下 1 2 3 4 5 6 7 8 9
public
void
getMap(View view){
Intent i =
- apache 做代理 报如下错误:The proxy server received an invalid response from an upstream
baalwolf
response
网站配置是apache+tomcat,tomcat没有报错,apache报错是:
The proxy server received an invalid response from an upstream server. The proxy server could not handle the request GET /. Reason: Error reading fr
- Tomcat6 内存和线程配置
BigBird2012
tomcat6
1、修改启动时内存参数、并指定JVM时区 (在windows server 2008 下时间少了8个小时)
在Tomcat上运行j2ee项目代码时,经常会出现内存溢出的情况,解决办法是在系统参数中增加系统参数:
window下, 在catalina.bat最前面
set JAVA_OPTS=-XX:PermSize=64M -XX:MaxPermSize=128m -Xms5
- Karam与TDD
bijian1013
KaramTDD
一.TDD
测试驱动开发(Test-Driven Development,TDD)是一种敏捷(AGILE)开发方法论,它把开发流程倒转了过来,在进行代码实现之前,首先保证编写测试用例,从而用测试来驱动开发(而不是把测试作为一项验证工具来使用)。
TDD的原则很简单:
a.只有当某个
- [Zookeeper学习笔记之七]Zookeeper源代码分析之Zookeeper.States
bit1129
zookeeper
public enum States {
CONNECTING, //Zookeeper服务器不可用,客户端处于尝试链接状态
ASSOCIATING, //???
CONNECTED, //链接建立,可以与Zookeeper服务器正常通信
CONNECTEDREADONLY, //处于只读状态的链接状态,只读模式可以在
- 【Scala十四】Scala核心八:闭包
bit1129
scala
Free variable A free variable of an expression is a variable that’s used inside the expression but not defined inside the expression. For instance, in the function literal expression (x: Int) => (x
- android发送json并解析返回json
ronin47
android
package com.http.test;
import org.apache.http.HttpResponse;
import org.apache.http.HttpStatus;
import org.apache.http.client.HttpClient;
import org.apache.http.client.methods.HttpGet;
import
- 一份IT实习生的总结
brotherlamp
PHPphp资料php教程php培训php视频
今天突然发现在不知不觉中自己已经实习了 3 个月了,现在可能不算是真正意义上的实习吧,因为现在自己才大三,在这边撸代码的同时还要考虑到学校的功课跟期末考试。让我震惊的是,我完全想不到在这 3 个月里我到底学到了什么,这是一件多么悲催的事情啊。同时我对我应该 get 到什么新技能也很迷茫。所以今晚还是总结下把,让自己在接下来的实习生活有更加明确的方向。最后感谢工作室给我们几个人这个机会让我们提前出来
- 据说是2012年10月人人网校招的一道笔试题-给出一个重物重量为X,另外提供的小砝码重量分别为1,3,9。。。3^N。 将重物放到天平左侧,问在两边如何添加砝码
bylijinnan
java
public class ScalesBalance {
/**
* 题目:
* 给出一个重物重量为X,另外提供的小砝码重量分别为1,3,9。。。3^N。 (假设N无限大,但一种重量的砝码只有一个)
* 将重物放到天平左侧,问在两边如何添加砝码使两边平衡
*
* 分析:
* 三进制
* 我们约定括号表示里面的数是三进制,例如 47=(1202
- dom4j最常用最简单的方法
chiangfai
dom4j
要使用dom4j读写XML文档,需要先下载dom4j包,dom4j官方网站在 http://www.dom4j.org/目前最新dom4j包下载地址:http://nchc.dl.sourceforge.net/sourceforge/dom4j/dom4j-1.6.1.zip
解开后有两个包,仅操作XML文档的话把dom4j-1.6.1.jar加入工程就可以了,如果需要使用XPath的话还需要
- 简单HBase笔记
chenchao051
hbase
一、Client-side write buffer 客户端缓存请求 描述:可以缓存客户端的请求,以此来减少RPC的次数,但是缓存只是被存在一个ArrayList中,所以多线程访问时不安全的。 可以使用getWriteBuffer()方法来取得客户端缓存中的数据。 默认关闭。 二、Scan的Caching 描述: next( )方法请求一行就要使用一次RPC,即使
- mysqldump导出时出现when doing LOCK TABLES
daizj
mysqlmysqdump导数据
执行 mysqldump -uxxx -pxxx -hxxx -Pxxxx database tablename > tablename.sql
导出表时,会报
mysqldump: Got error: 1044: Access denied for user 'xxx'@'xxx' to database 'xxx' when doing LOCK TABLES
解决
- CSS渲染原理
dcj3sjt126com
Web
从事Web前端开发的人都与CSS打交道很多,有的人也许不知道css是怎么去工作的,写出来的css浏览器是怎么样去解析的呢?当这个成为我们提高css水平的一个瓶颈时,是否应该多了解一下呢?
一、浏览器的发展与CSS
- 《阿甘正传》台词
dcj3sjt126com
Part Ⅰ:
《阿甘正传》Forrest Gump经典中英文对白
Forrest: Hello! My names Forrest. Forrest Gump. You wanna Chocolate? I could eat about a million and a half othese. My momma always said life was like a box ochocol
- Java处理JSON
dyy_gusi
json
Json在数据传输中很好用,原因是JSON 比 XML 更小、更快,更易解析。
在Java程序中,如何使用处理JSON,现在有很多工具可以处理,比较流行常用的是google的gson和alibaba的fastjson,具体使用如下:
1、读取json然后处理
class ReadJSON
{
public static void main(String[] args)
- win7下nginx和php的配置
geeksun
nginx
1. 安装包准备
nginx : 从nginx.org下载nginx-1.8.0.zip
php: 从php.net下载php-5.6.10-Win32-VC11-x64.zip, php是免安装文件。
RunHiddenConsole: 用于隐藏命令行窗口
2. 配置
# java用8080端口做应用服务器,nginx反向代理到这个端口即可
p
- 基于2.8版本redis配置文件中文解释
hongtoushizi
redis
转载自: http://wangwei007.blog.51cto.com/68019/1548167
在Redis中直接启动redis-server服务时, 采用的是默认的配置文件。采用redis-server xxx.conf 这样的方式可以按照指定的配置文件来运行Redis服务。下面是Redis2.8.9的配置文
- 第五章 常用Lua开发库3-模板渲染
jinnianshilongnian
nginxlua
动态web网页开发是Web开发中一个常见的场景,比如像京东商品详情页,其页面逻辑是非常复杂的,需要使用模板技术来实现。而Lua中也有许多模板引擎,如目前我在使用的lua-resty-template,可以渲染很复杂的页面,借助LuaJIT其性能也是可以接受的。
如果学习过JavaEE中的servlet和JSP的话,应该知道JSP模板最终会被翻译成Servlet来执行;而lua-r
- JZSearch大数据搜索引擎
颠覆者
JavaScript
系统简介:
大数据的特点有四个层面:第一,数据体量巨大。从TB级别,跃升到PB级别;第二,数据类型繁多。网络日志、视频、图片、地理位置信息等等。第三,价值密度低。以视频为例,连续不间断监控过程中,可能有用的数据仅仅有一两秒。第四,处理速度快。最后这一点也是和传统的数据挖掘技术有着本质的不同。业界将其归纳为4个“V”——Volume,Variety,Value,Velocity。大数据搜索引
- 10招让你成为杰出的Java程序员
pda158
java编程框架
如果你是一个热衷于技术的
Java 程序员, 那么下面的 10 个要点可以让你在众多 Java 开发人员中脱颖而出。
1. 拥有扎实的基础和深刻理解 OO 原则 对于 Java 程序员,深刻理解 Object Oriented Programming(面向对象编程)这一概念是必须的。没有 OOPS 的坚实基础,就领会不了像 Java 这些面向对象编程语言
- tomcat之oracle连接池配置
小网客
oracle
tomcat版本7.0
配置oracle连接池方式:
修改tomcat的server.xml配置文件:
<GlobalNamingResources>
<Resource name="utermdatasource" auth="Container"
type="javax.sql.DataSou
- Oracle 分页算法汇总
vipbooks
oraclesql算法.net
这是我找到的一些关于Oracle分页的算法,大家那里还有没有其他好的算法没?我们大家一起分享一下!
-- Oracle 分页算法一
select * from (
select page.*,rownum rn from (select * from help) page
-- 20 = (currentPag