- 《神经网络与深度学习》(邱锡鹏) 内容概要【不含数学推导】
code_stream
#机器学习神经网络
第1章绪论基本概念:介绍了人工智能的发展历程及不同阶段的特点,如符号主义、连接主义、行为主义等。还阐述了深度学习在人工智能领域的重要地位和发展现状,以及其在图像、语音、自然语言处理等多个领域的成功应用。术语解释人工智能:旨在让机器模拟人类智能的技术和科学。深度学习:一种基于对数据进行表征学习的方法,通过构建具有很多层的神经网络模型,自动从大量数据中学习复杂的模式和特征。第2章机器学习概述基本概念:
- BP 神经网络在考古数据分析中的应用
fanxbl957
人工智能理论与实践神经网络数据分析人工智能
BP神经网络在考古数据分析中的应用摘要:本文深入探讨了BP神经网络在考古数据分析领域的应用。首先阐述了考古数据分析的重要性以及传统分析方法的局限性。随后详细介绍了BP神经网络的结构、原理与训练算法。通过丰富的代码示例展示了如何运用BP神经网络进行考古文物的分类鉴定、年代预测以及遗址空间分布分析等任务,涵盖数据预处理、网络构建、模型训练与评估等关键环节。分析了该应用的优势与局限性,并对其在考古数据分
- 图像识别与应用
狂踹瘸子那条好脚
python
图像识别作为人工智能领域的重要分支,近年来取得了显著进展,其中卷积神经网络(CNN)功不可没。CNN凭借其强大的特征提取能力,在图像分类、目标检测、人脸识别等任务中表现出色,成为图像识别领域的核心技术。一、卷积神经网络:图像识别的利器CNN是一种专门处理网格状数据的深度学习模型,其结构设计灵感来源于生物视觉系统。与全连接神经网络不同,CNN通过卷积层、池化层等结构,能够有效提取图像的局部特征,并逐
- Mamba超绝创新!搭上异常检测准确率99%+!一区秒了!
人工智能学起来
人工智能深度学习
今天给大家推荐一个创新Max,且不卷的idea:基于Mamba做异常检测!以往的异常检测方法,以基于CNN、Transformer为主。但CNN在处理长距离依赖性方面存在困难,Transformer虽然表现出色,但由于其自注意力机制,计算复杂度较高。而Mamba,则完美弥补了这两者的缺陷,在有效处理长距离依赖性同时,具有线性复杂度,计算资源需求少!在提高模型检测精度和速度方面,一骑绝尘!比如模型A
- 线性回归理论
狂踹瘸子那条好脚
python
###线性回归与Softmax回归####线性回归线性回归是一种用于估计连续值的回归方法。它的应用场景非常广泛,比如在房地产市场中,参观一个房子后,我们可以通过线性回归模型来估计房子的价格,从而决定出价。线性回归的核心思想是通过训练数据来学习参数,使得模型的预测值与真实值之间的差异最小化。在神经网络中,线性回归可以看作是一个单层神经网络。通过损失函数来衡量预测值与真实值之间的差异,常用的损失函数包
- 基于python深度学习遥感影像地物分类与目标识别、分割实践技术应用
xiao5kou4chang6kai4
深度学习遥感勘测python深度学习分类
专题一:深度学习发展与机器学习深度学习的历史发展过程机器学习,深度学习等任务的基本处理流程梯度下降算法讲解不同初始化,学习率对梯度下降算法的实例分析从机器学习到深度学习算法专题二深度卷积网络、卷积神经网络、卷积运算的基本原理池化操作,全连接层,以及分类器的作用BP反向传播算法的理解一个简单CNN模型代码理解特征图,卷积核可视化分析专题三TensorFlow与keras介绍与入门TensorFlow
- muzero 算法原理
战神哥
Muzero算法是一种通用的强化学习算法,它可以在没有预先设定策略的情况下进行学习。它通过模拟整个游戏进程来自我学习,并通过回报函数来评估每一步的决策。Muzero算法的核心部分是一个叫做模型的神经网络,它会对游戏的状态进行预测,预测未来的游戏状态。另一部分是策略网络,它会根据当前状态预测每一步的最优决策。Muzero算法通过不断地训练模型和策略网络,来提高它们的准确性,从而使得机器学到了如何玩游
- 使用BLIP模型生成图像描述的可查询索引
dgay_hua
python计算机视觉开发语言
在本篇文章中,我们将介绍如何使用预训练的SalesforceBLIP图像描述模型,生成一个可查询的图像描述索引。我们将使用ImageCaptionLoader来加载图像,并通过一系列步骤生成查询索引。使用示例代码进行演示,帮助读者理解和实践。技术背景介绍随着计算机视觉技术的发展,图像描述生成成为了重要的研究领域。通过对图像内容自动生成文字描述,可以大大提高对图像信息的检索和管理效率。Salesfo
- 卷积神经网络之AlexNet经典神经网络,实现手写数字0~9识别
知识鱼丸
深度学习神经网络cnn人工智能深度学习AlexNet经典神经网络
深度学习中较为常见的神经网络模型AlexNet,AlexNet是一个采用GPU训练的深层CNN,本质是种LeNet变体。由特征提取层的5个卷积层两个下采样层和分类器中的三个全连接层构成。先看原理:AlexNet网络特点采用ReLU激活函数,使训练速度提升6倍采用dropout层,防止模型过拟合通过平移和翻转的方式对数据进行增强采用LRN局部响应归一化,限制数据大小,防止梯度消失和爆炸。但后续证明批
- 用 TensorFlow 搭建简单的手写数字识别模型
lozhyf
工作面试学习tensorflow人工智能python
一、引言手写数字识别是机器学习领域中一个经典且基础的问题,它在很多实际场景中都有广泛的应用,比如邮政系统中的邮件分拣、银行支票金额识别等。TensorFlow是一个强大的开源机器学习框架,由Google开发并维护,它提供了丰富的工具和接口,能帮助我们快速搭建和训练深度学习模型。在这篇博客中,我们将使用TensorFlow构建一个简单的神经网络模型,用于识别手写数字。二、环境准备在开始之前,你需要安
- 【机器学习】基于3D CNN通过CT图像分类预测肺炎
MUKAMO
AIPython应用机器学习深度学习人工智能神经网络3DCNN
1.引言1.1.研究背景在医学诊断中,医生通过分析CT影像来预测疾病时,面临一些挑战和局限性:图像信息的广度与复杂性:CT扫描生成的大量图像对医生来说既是信息的宝库也是处理上的负担。每组CT数据可能包含数百张切片,医生必须迅速审阅这些图像,以便捕捉到病变的微小细节。这种庞大的信息量要求医生在有限的时间内做出精准诊断,但同时也增加了漏诊或误诊的风险。部分容积效应也可能模糊小病变的边界,使得准确诊断变
- 训练与优化
钰见梵星
小土堆PyTorch深度学习深度学习pytorch人工智能
训练与优化损失函数与反向传播损失函数能够衡量神经网络输出与目标值之间的误差,同时为反向传播提供依据,计算梯度来优化网络中的参数。torch.nn.L1Loss计算所有预测值与真实值之间的绝对差。参数为reduction:'none':不对损失进行任何求和或平均,返回每个元素的损失。'mean':对损失进行平均,默认选项。'sum':对所有样本的损失进行求和。importtorchinput=tor
- 【深度学习pytorch-93】Transformer 相比 RNN 的优势
华东算法王
DL-pytorch深度学习pytorchtransformer
Transformer相比RNN的优势Transformer和RNN(循环神经网络)都是自然语言处理(NLP)领域的重要架构,但它们的工作原理和应用方式有很大不同。Transformer由于其独特的结构和机制,在多个方面优于RNN。以下是Transformer相比RNN的主要优势:1.并行计算能力RNN的局限性RNN是按顺序处理输入的,即每个时间步的输出都依赖于前一个时间步的输出。这意味着,在训练
- 深度学习模型中的知识蒸馏是如何工作的?
c++服务器开发
深度学习人工智能
深度学习模型在多个领域,特别是计算机视觉和自然语言处理中,已经取得了革命性的进展。然而,随着模型复杂性和资源需求的不断攀升,如何将这些庞大模型的知识浓缩为更紧凑、更高效的形式,成为了当前研究的热点。知识蒸馏,作为一种将知识从复杂模型转移到更简单模型的策略,已经成为实现这一目标的有效工具。在本文中,我们将深入探究深度学习模型中知识蒸馏的概念、原理及其在各领域的应用,以期为读者提供一个全面而严谨的视角
- Python从0到100(四):Python中的运算符介绍(补充)
是Dream呀
pythonjava数据库
前言:零基础学Python:Python从0到100最新最全教程。想做这件事情很久了,这次我更新了自己所写过的所有博客,汇集成了Python从0到100,共一百节课,帮助大家一个月时间里从零基础到学习Python基础语法、Python爬虫、Web开发、计算机视觉、机器学习、神经网络以及人工智能相关知识,成为学习学习和学业的先行者!欢迎大家订阅专栏:零基础学Python:Python从0到100最新
- Python从0到100(三十五):beautifulsoup的学习
是Dream呀
Dream的茶话会pythonbeautifulsoup学习
前言:零基础学Python:Python从0到100最新最全教程。想做这件事情很久了,这次我更新了自己所写过的所有博客,汇集成了Python从0到100,共一百节课,帮助大家一个月时间里从零基础到学习Python基础语法、Python爬虫、Web开发、计算机视觉、机器学习、神经网络以及人工智能相关知识,成为学习学习和学业的先行者!欢迎大家订阅专栏:零基础学Python:Python从0到100最新
- 《深入浅出AI》前言知识:深度学习基础总结
GoAI
深入浅出AI人工智能深度学习机器学习cnnrnn生成对抗网络神经网络
个人主页:GoAI|公众号:GoAI的学习小屋|交流群:704932595|个人简介:掘金签约作者、百度飞桨PPDE、领航团团长、开源特训营导师、CSDN、阿里云社区人工智能领域博客专家、新星计划计算机视觉方向导师等,专注大数据与人工智能知识分享。AI学习星球推荐:GoAI的学习社区知识星球是一个致力于提供《机器学习|深度学习|CV|NLP|大模型|多模态|AIGC》各个最新AI方向综述、论文等成
- 从零到入门:人工智能学习路径全解析
这题有点难度
人工智能学习
一、打破迷雾:重新认识人工智能人工智能(AI)早已不再是科幻电影中的专属概念,而是渗透到我们生活的方方面面。从手机里的语音助手到电商平台的推荐系统,从自动驾驶到医疗影像分析,AI技术正在重塑人类社会的运行方式。对于初学者而言,建立正确的认知框架至关重要:1.技术图谱解析:机器学习(ML):AI的核心驱动力,使计算机具备从数据中学习的能力深度学习(DL):基于神经网络的进阶技术,擅长处理图像、语音等
- 从代码到专利:如何用自注意力机制实现高效序列转换?——深度解析Google的Transformer架构
CodePatentMaster
transformer深度学习人工智能AIGC架构
本文将从五个方面【技术问题、技术手段、技术效果、代码实现逻辑和工程落地建议】解读以下专利。US201816021971A,ATTENTION-BASEDSEQUENCETRANSDUCTIONNEURALNETWORKS一、技术问题:为什么需要自注意力机制?在传统的序列转换任务(如机器翻译、语音识别等)中,循环神经网络(RNN)和卷积神经网络(CNN)是常用的模型架构。然而,这些模型存在以下问题:
- ColD Fusion,分布式多任务微调的协同 “密码”
人工智能
ColDFusion,分布式多任务微调的协同“密码”发布时间:2025-02-19近日热文:1.全网最全的神经网络数学原理(代码和公式)直观解释2.大模型进化史:从Transformer到DeepSeek-R1的AI变革之路3.2W8000字深度剖析25种RAG变体:全网最全~没有之一知乎【柏企】公众号【柏企科技说】【柏企阅文】在预训练模型的基础上进行改进,有望提升所有基于它微调的模型性能。然而,
- 【TVM教程】为 x86 CPU 自动调优卷积网络
ApacheTVM是一个深度的深度学习编译框架,适用于CPU、GPU和各种机器学习加速芯片。更多TVM中文文档可访问→https://tvm.hyper.ai/作者:YaoWang,EddieYan本文介绍如何为x86CPU调优卷积神经网络。注意,本教程不会在Windows或最新版本的macOS上运行。如需运行,请将本教程的主体放在if__name__=="__main__":代码块中。impor
- 【深度学习入门:基于python的理论与实现读书笔记】第五章误差反向传播法
Bin二叉
深度学习python人工智能
目录摘要第五章误差反向传播法简单层的实现乘法层的实现加法层的实现激活函数层的实现ReLU层Sigmoid层Affine层和Softmax层的实现Affine层Softmax-with-Loss层误差反向传播法的实现摘要该文章简要介绍了神经网络的误差反向传播法,省去了大量的推理过程,重点讲述了神经网络误差反向传播法的代码实现。第五章误差反向传播法反向传播就是从后到前局部计算偏导数并将其与从上游传来的
- PyTorch与TensorFlow的对比:哪个框架更适合你的项目?
木觞清
pytorchtensorflow人工智能
在机器学习和深度学习领域,PyTorch和TensorFlow是最流行的两个框架。它们各有特点,适用于不同的开发需求和场景。本文将详细对比这两个框架,帮助你根据项目需求选择最合适的工具。一、概述PyTorch和TensorFlow都是深度学习框架,它们为构建、训练和部署神经网络提供了强大的工具。尽管它们的最终目标相同,但其设计哲学和实现方式有所不同。PyTorch:由Facebook的人工智能研究
- OpenCV的卡尔曼滤波器:实现和应用
雪域Code
opencv人工智能计算机视觉C/C++
OpenCV的卡尔曼滤波器:实现和应用卡尔曼滤波器(Kalmanfilter)是一种最优估计的算法,在众多领域有着广泛的应用,如控制系统、通信系统、机器人等。OpenCV作为一个计算机视觉库,也提供了对卡尔曼滤波器的支持。本文将介绍OpenCV中卡尔曼滤波器的基本原理、实现方法以及在图像处理中的应用。一、卡尔曼滤波器简介卡尔曼滤波器是一种用于状态估计和信号滤波的算法,主要针对线性、高斯分布的系统。
- 生成式AI如何重塑计算机视觉:自监督学习与稀疏计算的革命
ProgramHan
人工智能计算机视觉学习
生成式AI如何重塑计算机视觉:自监督学习与稀疏计算的革命引言:从“数据饥渴”到“智能涌现”传统计算机视觉高度依赖海量标注数据,但现实场景中标注成本高昂且覆盖范围有限。例如,医疗影像标注需专业医生耗时数月,工业缺陷检测需针对特定产线定制数据集。生成式AI(如Diffusion模型、自监督学习)的崛起,正在打破这一瓶颈——通过更高效的训练范式与计算架构,让机器学会“从无标注数据中看见世界”。(示意图:
- 【深度学习】计算机视觉(CV)-目标检测-DETR(DEtection TRansformer)—— 基于 Transformer 的端到端目标检测
IT古董
深度学习人工智能深度学习计算机视觉目标检测
1.什么是DETR?DETR(DEtectionTRansformer)是FacebookAI(FAIR)于2020年提出的端到端目标检测算法,它基于Transformer架构,消除了FasterR-CNN、YOLO等方法中的候选框(AnchorBoxes)和非极大值抑制(NMS)机制,使目标检测变得更简单、高效。论文:End-to-EndObjectDetectionwithTransforme
- 遥感影像目标检测:从CNN(Faster-RCNN)到Transformer(DETR)
岁月如歌,青春不败
生态遥感目标检测cnntransformer遥感遥感影像
我国高分辨率对地观测系统重大专项已全面启动,高空间、高光谱、高时间分辨率和宽地面覆盖于一体的全球天空地一体化立体对地观测网逐步形成,将成为保障国家安全的基础性和战略性资源。未来10年全球每天获取的观测数据将超过10PB,遥感大数据时代已然来临。一:深度卷积网络知识1.深度学习在遥感图像识别中的范式和问题2.深度学习的历史发展历程3.机器学习,深度学习等任务的基本处理流程4.卷积神经网络的基本原理5
- 医学顶会 MICCAI‘24 | COVID19 至肺炎:使用 CNN Transformer 位置感知特征编码网络对多区域肺部严重程度进行分类
小白学视觉
医学图像处理论文解读cnntransformer分类深度学习医学图像处理医学图像顶会论文解读
本文内容只为星球内部成员学习和学术交流,请勿用作他用论文信息题目:COVID19toPneumonia:MultiRegionLungSeverityClassificationusingCNNTransformerPosition-AwareFeatureEncodingNetworkCOVID19至肺炎:使用CNNTransformer位置感知特征编码网络对多区域肺部严重程度进行分类作者:Jo
- 机器学习:支持向量机
小源学AI
人工智能支持向量机机器学习算法
基本概念1.什么是支持向量机支持向量机是一种二分类模型,在机器学习、计算机视觉、数据挖掘中广泛应用,主要用于解决数据分类问题,它的目的是寻找一个超平面对样本进行分割,分割的原则是间隔最大化(也就是数据集的边缘点到分界点的距离d最大)最终转化成一个凸二次规划问题来求解。通常的SVM用于二元分类问题,对于多元分类问题可将其分解为多个二元分类问题,在进行分类。2.最优分类边界什么才是最优分类边界?什么条
- 《大模型应用开发极简入门》随记
hoypte
人工智能
术语:自然语言处理(NLP)人工智能(AI)大预言模型(LLM)机器学习(ML)深度学习(DL)内容LLM概述ML算法被称为人工神经网络DL是ML的一个分支最先开始简单语言模型吗,例如:n-gram模型(通过词频来根据前面的词预测句子里下一个词---可能生成不连贯的词),为了提升性能引入循环神经网络(RNN)和长短期记忆(LSTM)网络---处理大量数据效率还是不行。Transformer架构架构
- java工厂模式
3213213333332132
java抽象工厂
工厂模式有
1、工厂方法
2、抽象工厂方法。
下面我的实现是抽象工厂方法,
给所有具体的产品类定一个通用的接口。
package 工厂模式;
/**
* 航天飞行接口
*
* @Description
* @author FuJianyong
* 2015-7-14下午02:42:05
*/
public interface SpaceF
- nginx频率限制+python测试
ronin47
nginx 频率 python
部分内容参考:http://www.abc3210.com/2013/web_04/82.shtml
首先说一下遇到这个问题是因为网站被攻击,阿里云报警,想到要限制一下访问频率,而不是限制ip(限制ip的方案稍后给出)。nginx连接资源被吃空返回状态码是502,添加本方案限制后返回599,与正常状态码区别开。步骤如下:
- java线程和线程池的使用
dyy_gusi
ThreadPoolthreadRunnabletimer
java线程和线程池
一、创建多线程的方式
java多线程很常见,如何使用多线程,如何创建线程,java中有两种方式,第一种是让自己的类实现Runnable接口,第二种是让自己的类继承Thread类。其实Thread类自己也是实现了Runnable接口。具体使用实例如下:
1、通过实现Runnable接口方式 1 2
- Linux
171815164
linux
ubuntu kernel
http://kernel.ubuntu.com/~kernel-ppa/mainline/v4.1.2-unstable/
安卓sdk代理
mirrors.neusoft.edu.cn 80
输入法和jdk
sudo apt-get install fcitx
su
- Tomcat JDBC Connection Pool
g21121
Connection
Tomcat7 抛弃了以往的DBCP 采用了新的Tomcat Jdbc Pool 作为数据库连接组件,事实上DBCP已经被Hibernate 所抛弃,因为他存在很多问题,诸如:更新缓慢,bug较多,编译问题,代码复杂等等。
Tomcat Jdbc P
- 敲代码的一点想法
永夜-极光
java随笔感想
入门学习java编程已经半年了,一路敲代码下来,现在也才1w+行代码量,也就菜鸟水准吧,但是在整个学习过程中,我一直在想,为什么很多培训老师,网上的文章都是要我们背一些代码?比如学习Arraylist的时候,教师就让我们先参考源代码写一遍,然
- jvm指令集
程序员是怎么炼成的
jvm 指令集
转自:http://blog.csdn.net/hudashi/article/details/7062675#comments
将值推送至栈顶时 const ldc push load指令
const系列
该系列命令主要负责把简单的数值类型送到栈顶。(从常量池或者局部变量push到栈顶时均使用)
0x02 &nbs
- Oracle字符集的查看查询和Oracle字符集的设置修改
aijuans
oracle
本文主要讨论以下几个部分:如何查看查询oracle字符集、 修改设置字符集以及常见的oracle utf8字符集和oracle exp 字符集问题。
一、什么是Oracle字符集
Oracle字符集是一个字节数据的解释的符号集合,有大小之分,有相互的包容关系。ORACLE 支持国家语言的体系结构允许你使用本地化语言来存储,处理,检索数据。它使数据库工具,错误消息,排序次序,日期,时间,货
- png在Ie6下透明度处理方法
antonyup_2006
css浏览器FirebugIE
由于之前到深圳现场支撑上线,当时为了解决个控件下载,我机器上的IE8老报个错,不得以把ie8卸载掉,换个Ie6,问题解决了,今天出差回来,用ie6登入另一个正在开发的系统,遇到了Png图片的问题,当然升级到ie8(ie8自带的开发人员工具调试前端页面JS之类的还是比较方便的,和FireBug一样,呵呵),这个问题就解决了,但稍微做了下这个问题的处理。
我们知道PNG是图像文件存储格式,查询资
- 表查询常用命令高级查询方法(二)
百合不是茶
oracle分页查询分组查询联合查询
----------------------------------------------------分组查询 group by having --平均工资和最高工资 select avg(sal)平均工资,max(sal) from emp ; --每个部门的平均工资和最高工资
- uploadify3.1版本参数使用详解
bijian1013
JavaScriptuploadify3.1
使用:
绑定的界面元素<input id='gallery'type='file'/>$("#gallery").uploadify({设置参数,参数如下});
设置的属性:
id: jQuery(this).attr('id'),//绑定的input的ID
langFile: 'http://ww
- 精通Oracle10编程SQL(17)使用ORACLE系统包
bijian1013
oracle数据库plsql
/*
*使用ORACLE系统包
*/
--1.DBMS_OUTPUT
--ENABLE:用于激活过程PUT,PUT_LINE,NEW_LINE,GET_LINE和GET_LINES的调用
--语法:DBMS_OUTPUT.enable(buffer_size in integer default 20000);
--DISABLE:用于禁止对过程PUT,PUT_LINE,NEW
- 【JVM一】JVM垃圾回收日志
bit1129
垃圾回收
将JVM垃圾回收的日志记录下来,对于分析垃圾回收的运行状态,进而调整内存分配(年轻代,老年代,永久代的内存分配)等是很有意义的。JVM与垃圾回收日志相关的参数包括:
-XX:+PrintGC
-XX:+PrintGCDetails
-XX:+PrintGCTimeStamps
-XX:+PrintGCDateStamps
-Xloggc
-XX:+PrintGC
通
- Toast使用
白糖_
toast
Android中的Toast是一种简易的消息提示框,toast提示框不能被用户点击,toast会根据用户设置的显示时间后自动消失。
创建Toast
两个方法创建Toast
makeText(Context context, int resId, int duration)
参数:context是toast显示在
- angular.identity
boyitech
AngularJSAngularJS API
angular.identiy 描述: 返回它第一参数的函数. 此函数多用于函数是编程. 使用方法: angular.identity(value); 参数详解: Param Type Details value
*
to be returned. 返回值: 传入的value 实例代码:
<!DOCTYPE HTML>
- java-两整数相除,求循环节
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
public class CircleDigitsInDivision {
/**
* 题目:求循环节,若整除则返回NULL,否则返回char*指向循环节。先写思路。函数原型:char*get_circle_digits(unsigned k,unsigned j)
- Java 日期 周 年
Chen.H
javaC++cC#
/**
* java日期操作(月末、周末等的日期操作)
*
* @author
*
*/
public class DateUtil {
/** */
/**
* 取得某天相加(减)後的那一天
*
* @param date
* @param num
*
- [高考与专业]欢迎广大高中毕业生加入自动控制与计算机应用专业
comsci
计算机
不知道现在的高校还设置这个宽口径专业没有,自动控制与计算机应用专业,我就是这个专业毕业的,这个专业的课程非常多,既要学习自动控制方面的课程,也要学习计算机专业的课程,对数学也要求比较高.....如果有这个专业,欢迎大家报考...毕业出来之后,就业的途径非常广.....
以后
- 分层查询(Hierarchical Queries)
daizj
oracle递归查询层次查询
Hierarchical Queries
If a table contains hierarchical data, then you can select rows in a hierarchical order using the hierarchical query clause:
hierarchical_query_clause::=
start with condi
- 数据迁移
daysinsun
数据迁移
最近公司在重构一个医疗系统,原来的系统是两个.Net系统,现需要重构到java中。数据库分别为SQL Server和Mysql,现需要将数据库统一为Hana数据库,发现了几个问题,但最后通过努力都解决了。
1、原本通过Hana的数据迁移工具把数据是可以迁移过去的,在MySQl里面的字段为TEXT类型的到Hana里面就存储不了了,最后不得不更改为clob。
2、在数据插入的时候有些字段特别长
- C语言学习二进制的表示示例
dcj3sjt126com
cbasic
进制的表示示例
# include <stdio.h>
int main(void)
{
int i = 0x32C;
printf("i = %d\n", i);
/*
printf的用法
%d表示以十进制输出
%x或%X表示以十六进制的输出
%o表示以八进制输出
*/
return 0;
}
- NsTimer 和 UITableViewCell 之间的控制
dcj3sjt126com
ios
情况是这样的:
一个UITableView, 每个Cell的内容是我自定义的 viewA viewA上面有很多的动画, 我需要添加NSTimer来做动画, 由于TableView的复用机制, 我添加的动画会不断开启, 没有停止, 动画会执行越来越多.
解决办法:
在配置cell的时候开始动画, 然后在cell结束显示的时候停止动画
查找cell结束显示的代理
- MySql中case when then 的使用
fanxiaolong
casewhenthenend
select "主键", "项目编号", "项目名称","项目创建时间", "项目状态","部门名称","创建人"
union
(select
pp.id as "主键",
pp.project_number as &
- Ehcache(01)——简介、基本操作
234390216
cacheehcache简介CacheManagercrud
Ehcache简介
目录
1 CacheManager
1.1 构造方法构建
1.2 静态方法构建
2 Cache
2.1&
- 最容易懂的javascript闭包学习入门
jackyrong
JavaScript
http://www.ruanyifeng.com/blog/2009/08/learning_javascript_closures.html
闭包(closure)是Javascript语言的一个难点,也是它的特色,很多高级应用都要依靠闭包实现。
下面就是我的学习笔记,对于Javascript初学者应该是很有用的。
一、变量的作用域
要理解闭包,首先必须理解Javascript特殊
- 提升网站转化率的四步优化方案
php教程分享
数据结构PHP数据挖掘Google活动
网站开发完成后,我们在进行网站优化最关键的问题就是如何提高整体的转化率,这也是营销策略里最最重要的方面之一,并且也是网站综合运营实例的结果。文中分享了四大优化策略:调查、研究、优化、评估,这四大策略可以很好地帮助用户设计出高效的优化方案。
PHP开发的网站优化一个网站最关键和棘手的是,如何提高整体的转化率,这是任何营销策略里最重要的方面之一,而提升网站转化率是网站综合运营实力的结果。今天,我就分
- web开发里什么是HTML5的WebSocket?
naruto1990
Webhtml5浏览器socket
当前火起来的HTML5语言里面,很多学者们都还没有完全了解这语言的效果情况,我最喜欢的Web开发技术就是正迅速变得流行的 WebSocket API。WebSocket 提供了一个受欢迎的技术,以替代我们过去几年一直在用的Ajax技术。这个新的API提供了一个方法,从客户端使用简单的语法有效地推动消息到服务器。让我们看一看6个HTML5教程介绍里 的 WebSocket API:它可用于客户端、服
- Socket初步编程——简单实现群聊
Everyday都不同
socket网络编程初步认识
初次接触到socket网络编程,也参考了网络上众前辈的文章。尝试自己也写了一下,记录下过程吧:
服务端:(接收客户端消息并把它们打印出来)
public class SocketServer {
private List<Socket> socketList = new ArrayList<Socket>();
public s
- 面试:Hashtable与HashMap的区别(结合线程)
toknowme
昨天去了某钱公司面试,面试过程中被问道
Hashtable与HashMap的区别?当时就是回答了一点,Hashtable是线程安全的,HashMap是线程不安全的,说白了,就是Hashtable是的同步的,HashMap不是同步的,需要额外的处理一下。
今天就动手写了一个例子,直接看代码吧
package com.learn.lesson001;
import java
- MVC设计模式的总结
xp9802
设计模式mvc框架IOC
随着Web应用的商业逻辑包含逐渐复杂的公式分析计算、决策支持等,使客户机越
来越不堪重负,因此将系统的商业分离出来。单独形成一部分,这样三层结构产生了。
其中‘层’是逻辑上的划分。
三层体系结构是将整个系统划分为如图2.1所示的结构[3]
(1)表现层(Presentation layer):包含表示代码、用户交互GUI、数据验证。
该层用于向客户端用户提供GUI交互,它允许用户