李宏毅-机器学习hw4-self-attention结构-辨别600个speaker的身份

一、慢慢分析+学习pytorch中的各个模块的参数含义、使用方法、功能:

1.encoder编码器中的nhead参数:

self.encoder_layer = nn.TransformerEncoderLayer( d_model=d_model, dim_feedforward=256, nhead=2)

李宏毅-机器学习hw4-self-attention结构-辨别600个speaker的身份_第1张图片

所以说,这个nhead的意思,就是有window窗口的大小,也就是一个b由几个a得到

2.tensor.permute改变维度的用法示例:
#尝试使用permute函数进行测试:可以通过tensor张量直接调用
import torch
import numpy as np
x = np.array([[[1,1,1],[2,2,2]],[[3,3,3],[4,4,4]]])
y = torch.tensor(x)
#y.shape
z=y.permute(2,1,0)
z.shape
print(z) #permute之后变成了3*2*2的维度
print(y) #本来是一个2*2*3从外到内的维度
3.tensor.mean求均值:从1个向量 到 1个数值:

李宏毅-机器学习hw4-self-attention结构-辨别600个speaker的身份_第2张图片

4.python中字典(映射)的使用:

李宏毅-机器学习hw4-self-attention结构-辨别600个speaker的身份_第3张图片

二、model的neural network设计部分:

import torch
import torch.nn as nn
import torch.nn.functional as F


class Classifier(nn.Module):
	def __init__(self, d_model=80, n_spks=600, dropout=0.1):
		super().__init__()
		# Project the dimension of features from that of input into d_model.
		self.prenet = nn.Linear(40, d_model) #通过一个线性的输入层,从40个维度,变成d_model个

		#展示不需要使用这个conformer进行实验
		# TODO:
		#   Change Transformer to Conformer. 
		#   https://arxiv.org/abs/2005.08100
		#这里是不需要自己设计 self-attention层的,因为transformer的encoder层用到self-attention层
		self.encoder_layer = nn.TransformerEncoderLayer( 
			d_model=d_model, dim_feedforward=256, nhead=2 #输入维度是上面的d_model,输出维度是256,这2个nhead是啥?一个b由几个a得到
		)
	  #下面这个暂时用不到
		# self.encoder = nn.TransformerEncoder(self.encoder_layer, num_layers=2)

		# Project the the dimension of features from d_model into speaker nums.
		#predict_layer
		self.pred_layer = nn.Sequential( #这里其实就相当于是一个线性输出层了,最终输出的是一个n_soks维度600的向量
			nn.Linear(d_model, d_model),
			nn.ReLU(),
			nn.Linear(d_model, n_spks),
		)

	def forward(self, mels):
		"""
		args:
			mels: (batch size, length, 40) #我来试图解释一下这个东西,反正就是一段声音信号处理后得到的3维tensor,最里面那一维是40
		return:
			out: (batch size, n_spks) #最后只要输出每个batch中的行数 + 每一行中的n_spks的数值
		"""
		# out: (batch size, length, d_model) #原来out设置的3个维度的数据分别是batchsize , 
		out = self.prenet(mels) #通过一个prenet层之后,最里面的那一维空间 就变成了一个d_model维度
		# out: (length, batch size, d_model)
		out = out.permute(1, 0, 2) #利用permute将0维和1维进行交换
		# The encoder layer expect features in the shape of (length, batch size, d_model).
		out = self.encoder_layer(out)
		# out: (batch size, length, d_model)
		out = out.transpose(0, 1) #重新得到原来的维度,这次用transpose和上一次用permute没有区别
		# mean pooling
		stats = out.mean(dim=1) #对维度1(第二个维度)计算均值,也就是将整个向量空间-->转成1个数值
		#得到的是batch,d_model (len就是一行的数据,从这一行中取均值,就是所谓的均值池化)

		# out: (batch, n_spks)
		out = self.pred_layer(stats) #这里得到n_spks还不是one-hot vec
		return out

三、warming up 的设计过程:

import math

import torch
from torch.optim import Optimizer
from torch.optim.lr_scheduler import LambdaLR

#这部分的代码感觉有一点诡异,好像是设计了一个learning rate的warmup过程,算了,之后再回来阅读好了


def get_cosine_schedule_with_warmup(
	optimizer: Optimizer,
	num_warmup_steps: int,
	num_training_steps: int,
	num_cycles: float = 0.5,
	last_epoch: int = -1,
):
	"""
	Create a schedule with a learning rate that decreases following the values of the cosine function between the
	initial lr set in the optimizer to 0, after a warmup period during which it increases linearly between 0 and the
	initial lr set in the optimizer.

	Args:
		optimizer (:class:`~torch.optim.Optimizer`):
		The optimizer for which to schedule the learning rate.
		num_warmup_steps (:obj:`int`):
		The number of steps for the warmup phase.
		num_training_steps (:obj:`int`):
		The total number of training steps.
		num_cycles (:obj:`float`, `optional`, defaults to 0.5):
		The number of waves in the cosine schedule (the defaults is to just decrease from the max value to 0
		following a half-cosine).
		last_epoch (:obj:`int`, `optional`, defaults to -1):
		The index of the last epoch when resuming training.

	Return:
		:obj:`torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule.
	"""
	def lr_lambda(current_step):
		# Warmup
		if current_step < num_warmup_steps:
			return float(current_step) / float(max(1, num_warmup_steps))
		# decadence
		progress = float(current_step - num_warmup_steps) / float(
			max(1, num_training_steps - num_warmup_steps)
		)
		return max(
			0.0, 0.5 * (1.0 + math.cos(math.pi * float(num_cycles) * 2.0 * progress))
		)

	return LambdaLR(optimizer, lr_lambda, last_epoch)

四、train中每个batch进行的处理:

import torch

#这里面其实就是原来train部分的代码处理一个batch的操作

def model_fn(batch, model, criterion, device): #这个函数的参数是batch数据,model,loss_func,设备
	"""Forward a batch through the model."""

	mels, labels = batch #获取mels参数 和 labels参数
	mels = mels.to(device)
	labels = labels.to(device)

	outs = model(mels) #得到的输出结果

	loss = criterion(outs, labels) #通过和labels进行比较得到loss

	# Get the speaker id with highest probability.
	preds = outs.argmax(1) #按照列的方向 计算出最大的索引位置
	# Compute accuracy.
	accuracy = torch.mean((preds == labels).float()) #通过将preds和labels进行比较得到acc的数值

	return loss, accuracy

五、validation的处理函数:

from tqdm import tqdm
import torch


def valid(dataloader, model, criterion, device):  #感觉就是整个validationset中的数据都进行了操作
	"""Validate on validation set."""

	model.eval() #开启evaluation模式
	running_loss = 0.0
	running_accuracy = 0.0
	pbar = tqdm(total=len(dataloader.dataset), ncols=0, desc="Valid", unit=" uttr") #创建进度条,实现可视化process_bar

	for i, batch in enumerate(dataloader): #下标i,batch数据存到batch中
		with torch.no_grad(): #先说明不会使用SGD
			loss, accuracy = model_fn(batch, model, criterion, device) #调用上面定义的batch处理函数得到loss 和 acc
			running_loss += loss.item()
			running_accuracy += accuracy.item()

		pbar.update(dataloader.batch_size) #这些处理进度条的内容可以暂时不用管 
		pbar.set_postfix(
			loss=f"{running_loss / (i+1):.2f}",
			accuracy=f"{running_accuracy / (i+1):.2f}",
		)

	pbar.close()
	model.train()

	return running_accuracy / len(dataloader) #返回正确率

六、train的main调用:

from tqdm import tqdm

import torch
import torch.nn as nn
from torch.optim import AdamW
from torch.utils.data import DataLoader, random_split


def parse_args(): #定义一个给config赋值的函数
	"""arguments"""
	config = {
		"data_dir": "./Dataset",
		"save_path": "model.ckpt",
		"batch_size": 32,
		"n_workers": 1, #这个参数太大的时候,我的这个会error
		"valid_steps": 2000,
		"warmup_steps": 1000,
		"save_steps": 10000,
		"total_steps": 70000,
	}

	return config


def main( #可以直接用上面定义那些参数作为这个main里面的参数
	data_dir,
	save_path,
	batch_size,
	n_workers,
	valid_steps,
	warmup_steps,
	total_steps,
	save_steps,
):
	"""Main function."""
	device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
	print(f"[Info]: Use {device} now!")

	train_loader, valid_loader, speaker_num = get_dataloader(data_dir, batch_size, n_workers) #获取所需的data,调用get_dataloader函数
	train_iterator = iter(train_loader) #定义一个train_data的迭代器
	print(f"[Info]: Finish loading data!",flush = True)

	model = Classifier(n_spks=speaker_num).to(device) #构造一个model的实例
	criterion = nn.CrossEntropyLoss() #分别构造loss_func 和 optimizer的实例
	optimizer = AdamW(model.parameters(), lr=1e-3)
	scheduler = get_cosine_schedule_with_warmup(optimizer, warmup_steps, total_steps) #构造warmup的实例
	print(f"[Info]: Finish creating model!",flush = True)

	best_accuracy = -1.0
	best_state_dict = None

	pbar = tqdm(total=valid_steps, ncols=0, desc="Train", unit=" step") #process_bar相关的东西,不用管它

	for step in range(total_steps): #一共需要的步数进行for循环
		# Get data
		try:
			batch = next(train_iterator) #从train_data中获取到下一个batch的数据
		except StopIteration:
			train_iterator = iter(train_loader)
			batch = next(train_iterator)

		loss, accuracy = model_fn(batch, model, criterion, device) #传递对应的数据、模型参数,得到这个batch的loss和acc
		batch_loss = loss.item()
		batch_accuracy = accuracy.item()

		# Updata model
		loss.backward()
		optimizer.step()
		scheduler.step()
		optimizer.zero_grad() #更新进行Gradient descend 更新模型,并且将grad清空

		# Log
		pbar.update() #process_bar的东西先不管
		pbar.set_postfix(
			loss=f"{batch_loss:.2f}",
			accuracy=f"{batch_accuracy:.2f}",
			step=step + 1,
		)

		# Do validation
		if (step + 1) % valid_steps == 0:
			pbar.close()

			valid_accuracy = valid(valid_loader, model, criterion, device) #调用valid函数计算这一次validation的正确率

			# keep the best model
			if valid_accuracy > best_accuracy: #总是保持最好的valid_acc
				best_accuracy = valid_accuracy
				best_state_dict = model.state_dict()

			pbar = tqdm(total=valid_steps, ncols=0, desc="Train", unit=" step")

		# Save the best model so far.
		if (step + 1) % save_steps == 0 and best_state_dict is not None:
			torch.save(best_state_dict, save_path) #保存最好的model参数
			pbar.write(f"Step {step + 1}, best model saved. (accuracy={best_accuracy:.4f})")

	pbar.close()


if __name__ == "__main__": #调用这个main函数
	main(**parse_args())

七、inference部分的test内容:

import os
import json
import torch
from pathlib import Path
from torch.utils.data import Dataset


class InferenceDataset(Dataset):
	def __init__(self, data_dir):
		testdata_path = Path(data_dir) / "testdata.json"
		metadata = json.load(testdata_path.open())
		self.data_dir = data_dir
		self.data = metadata["utterances"]

	def __len__(self):
		return len(self.data)

	def __getitem__(self, index):
		utterance = self.data[index]
		feat_path = utterance["feature_path"]
		mel = torch.load(os.path.join(self.data_dir, feat_path))

		return feat_path, mel


def inference_collate_batch(batch):
	"""Collate a batch of data."""
	feat_paths, mels = zip(*batch)

	return feat_paths, torch.stack(mels)
import json
import csv
from pathlib import Path
from tqdm.notebook import tqdm

import torch
from torch.utils.data import DataLoader

def parse_args():
	"""arguments"""
	config = {
		"data_dir": "./Dataset",
		"model_path": "./model.ckpt",
		"output_path": "./output.csv",
	}

	return config


def main(
	data_dir,
	model_path,
	output_path,
):
	"""Main function."""
	device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
	print(f"[Info]: Use {device} now!")

	mapping_path = Path(data_dir) / "mapping.json"
	mapping = json.load(mapping_path.open())

	dataset = InferenceDataset(data_dir)
	dataloader = DataLoader(
		dataset,
		batch_size=1,
		shuffle=False,
		drop_last=False,
		num_workers=8,
		collate_fn=inference_collate_batch,
	)
	print(f"[Info]: Finish loading data!",flush = True)

	speaker_num = len(mapping["id2speaker"])
	model = Classifier(n_spks=speaker_num).to(device)
	model.load_state_dict(torch.load(model_path))
	model.eval()
	print(f"[Info]: Finish creating model!",flush = True)

	results = [["Id", "Category"]]
	for feat_paths, mels in tqdm(dataloader):
		with torch.no_grad():
			mels = mels.to(device)
			outs = model(mels)  #调用model计算得到outs
			preds = outs.argmax(1).cpu().numpy() #对outs进行argmax,得到的索引存储到preds中
			for feat_path, pred in zip(feat_paths, preds):
				results.append([feat_path, mapping["id2speaker"][str(pred)]]) #将每一次的结果存放的到results中

	with open(output_path, 'w', newline='') as csvfile:
		writer = csv.writer(csvfile)
		writer.writerows(results)


if __name__ == "__main__":
	main(**parse_args())

inference部分的代码暂时就看看好了,这个2022版本的数据在github上404了。。。

七、Dataset的处理过程:

import os
import json
import torch
import random
from pathlib import Path
from torch.utils.data import Dataset
from torch.nn.utils.rnn import pad_sequence
 
 
class myDataset(Dataset):
	def __init__(self, data_dir, segment_len=128):
		self.data_dir = data_dir
		self.segment_len = segment_len
	
		# Load the mapping from speaker neme to their corresponding id. 
		mapping_path = Path(data_dir) / "mapping.json"
		mapping = json.load(mapping_path.open()) #将这个json文件load到变量mapping中
		self.speaker2id = mapping["speaker2id"] #其实speaker2id这个变量就是mapping里面的内容
		#其实也就是原来数据集中的"id00464"变成我们这里的600个人的数据集的0-599的id
	
		# Load metadata of training data.
		metadata_path = Path(data_dir) / "metadata.json"
		metadata = json.load(open(metadata_path))["speakers"]
		#和上面类似的操作,这里的metadata就是打开那个json文件中的内容
		#我觉得按照他上课的说法,这里的n_mels的意思就是每个特征音频长度取出40就好了,?对吗
		#然后,这个json文件里面的内容就是不同speakerid所发声的音频文件的路径和mel_len


		# Get the total number of speaker.
		self.speaker_num = len(metadata.keys())
		self.data = [] #data就是这个class中的数据
		for speaker in metadata.keys(): #逐个遍历每个speaker
			for utterances in metadata[speaker]: #遍历每个speaker的每一段录音
				self.data.append([utterances["feature_path"], self.speaker2id[speaker]])#将每一段录音按照 (路径,新id)存入data变量中
 
	def __len__(self):
			return len(self.data) #返回总共的data数量
 
	def __getitem__(self, index):
		feat_path, speaker = self.data[index] #从下标位置获取到该段录音的路径 和 speakerid
		# Load preprocessed mel-spectrogram.
		mel = torch.load(os.path.join(self.data_dir, feat_path)) #从路径中获取到该mel录音文件

		# Segmemt mel-spectrogram into "segment_len" frames.
		if len(mel) > self.segment_len: #如果大于128这个seg , 一些处理....
			# Randomly get the starting point of the segment.
			start = random.randint(0, len(mel) - self.segment_len)
			# Get a segment with "segment_len" frames.
			mel = torch.FloatTensor(mel[start:start+self.segment_len])
		else:
			mel = torch.FloatTensor(mel)
		# Turn the speaker id into long for computing loss later.
		speaker = torch.FloatTensor([speaker]).long() #将speakerid转换为long类型 
		return mel, speaker #返回这个录音mel文件和对应的speakerid
 
	def get_speaker_number(self):
		return self.speaker_num

这里附带我下载的文件资源路径:

ML2022Spring-hw4 | Kaggle

下面dropbox的链接是可以使用的

李宏毅-机器学习hw4-self-attention结构-辨别600个speaker的身份_第4张图片

!wget https://www.dropbox.com/s/vw324newiku0sz0/Dataset.tar.gz.aa?d1=0
!wget https://www.dropbox.com/s/vw324newiku0sz0/Dataset.tar.gz.aa?d1=0 
!wget https://www.dropbox.com/s/z840g69e71nkayo/Dataset.tar.gz.ab?d1=0 
!wget https://www.dropbox.com/s/h1081e1ggonio81/Dataset.tar.gz.ac?d1=0 
!wget https://www.dropbox.com/s/fh3zd8ow668c4th/Dataset.tar.gz.ad?d1=0 
!wget https://www.dropbox.com/s/ydzygoy2pv6gw9d/Dataset.tar.gz.ae?d1=0
!cat Dataset.tar.gz.*  |  tar zxvf  -

这样才能下载到你需要的数据

怎么说呢?最后的最后,还是这个dropbox中下载的内容不全,少了一些文件

有一个解决的方法是,直接在kaggle上面下载那个5.2GB的压缩包,不过解压之后可能有70GB,文件似乎太大了,而且下载之后,只要全部解压导入到Dataset文件夹就可以运行了

方法三:尝试一下那个GoogleDrive上面的文件 :

失败了,算了还是自己老老实实下载然后上传吧

!gdown --id '1CtHZhJ-mTpNsO-MqvAPIi4Yrt3oSBXYV' --output Dataset.zip
!gdown --id '14hmoMgB1fe6v50biIceKyndyeYABGrRq' --output Dataset.zip 
!gdown --id '1e9x-Pj13n7-9tK9LS_WjiMo21ru4UBH9' --output Dataset.zip 
!gdown --id '10TC0g46bcAz_jkiM165zNmwttT4RiRgY' --output Dataset.zip 
!gdown --id '1MUGBvG_Jjq00C2JYHuyV3B01vaf1kWIm' --output Dataset.zip 
!gdown --id '18M91P5DHwILNy01ssZ57AiPOR0OwutOM' --output Dataset.zip 
!unzip Dataset.zip

李宏毅-机器学习hw4-self-attention结构-辨别600个speaker的身份_第5张图片

你可能感兴趣的:(人工智能,机器学习,人工智能)