后面打算开始撸其他框架源码,而Netty对Java NIO的一层封装,提供了一套简单易用的API,经常被其他框架拿来用,我先花了点时间研究了下。这里整理下对源码的解读,以及对几个关键对象的介绍。分析了之前两篇流水账式的源码分析的不足,这次尝试聚焦几个不同重点进行分析。
个人netty注释版本:https://gitee.com/Nortyr/netty
原netty地址:https://github.com/netty/netty
BIO模型。庞大的线程消耗,消费消息如果很漫长,这个服务就是个灾难。
public void server(int port) throws IOException{
final ServerSocket socket=new ServerSocket(port);
for (;;){
//接受连接
final Socket clientSock = socket.accept();
System.out.println("Accept connection from"+ clientSock);
//创建一个线程来处理连接
new Thread(new Runnable() {
@Override
public void run() {
OutputStream out;
try {
out=clientSock.getOutputStream();
... doSomeThing...
//将消息写给已连接的客户端
out.write("Hello world".getBytes(Charset.forName("UTF-8")));
out.flush();
clientSock.close();
}
...略...
}
}).start();
}
}
故此Java设计出了NIO,这里找到个Doug Lea大神的一篇 NIOppt http://gee.cs.oswego.edu/dl/cpjslides/nio.pdf 感兴趣的可以看一下,十分精简。下面这部分会结合这个ppt进行讲解,看完这个ppt的可以直接略过到下一个部分。
public static void main(String[] args) throws IOException {
//创建ServerSocketChannel,处理接入连接
ServerSocketChannel serverSocketChannel=ServerSocketChannel.open();
//创建Selector
Selector selector=Selector.open();
//设置是否为非阻塞
serverSocketChannel.configureBlocking(false);
//创建注册channel进selector的创立连接时间
serverSocketChannel.register(selector, SelectionKey.OP_ACCEPT);
//绑定端口号
serverSocketChannel.socket().bind(new InetSocketAddress(8080));
while (true){
if(serverSocketChannel.isOpen()){
// 通过 Selector 选择 Channel
int selectNums = selector.select(1000L);
if (selectNums == 0) {
continue;
}
// 遍历可选择的 Channel 的 SelectionKey 集合
for (SelectionKey selectKey:selector.selectedKeys()) {
// 忽略无效的 SelectionKey
if (!selectKey.isValid()) {
continue;
}
//新建立的连接
if(selectKey.isAcceptable()){
//获取新连接创建的channel
SocketChannel socketChannel= ((ServerSocketChannel) selectKey.channel()).accept();
if(socketChannel!=null){
//设置为非阻塞
socketChannel.configureBlocking(false);
//注册进selector
socketChannel.register(selector,SelectionKey.OP_READ);
}
}
//处理读时间
if(selectKey.isReadable()){
SocketChannel socketChannel= (SocketChannel) selectKey.channel();
if(socketChannel!=null){
//读取数据
ByteBuffer buffer = ByteBuffer.allocate(1024);
int bytesRead = socketChannel.read(buffer);
if(bytesRead==-1){
socketChannel.register(selector,0);
socketChannel.close();
}else{
buffer.flip();
byte[] bytes = new byte[buffer.remaining()];
System.arraycopy(buffer.array(), buffer.position(), bytes, 0, buffer.remaining());
System.out.println(new String(bytes, "UTF-8"));
}
}
}
}
}
}
}
这里我们以NioServerSocketChannel
为例,看一下Channel
public interface Channel extends AttributeMap, ChannelOutboundInvoker, Comparable<Channel> {
ChannelId id();
EventLoop eventLoop();
Channel parent();
ChannelConfig config();
boolean isOpen();
boolean isRegistered();
boolean isActive();
ChannelMetadata metadata();
SocketAddress localAddress();
SocketAddress remoteAddress();
ChannelFuture closeFuture();
boolean isWritable();
long bytesBeforeUnwritable();
long bytesBeforeWritable();
Unsafe unsafe();
ChannelPipeline pipeline();
ByteBufAllocator alloc();
@Override
Channel read();
@Override
Channel flush();
/**
* 调用Javanio方法封装
*/
interface Unsafe {
RecvByteBufAllocator.Handle recvBufAllocHandle();
/**
* 返回地址
*/
SocketAddress localAddress();
/**
* 返回远程地址
*/
SocketAddress remoteAddress();
/**
* 注册Channel,注册完成后通知ChannelPromise
*/
void register(EventLoop eventLoop, ChannelPromise promise);
/**
* 将ip地址绑定到Channel,完成后通知ChannelPromise
*/
void bind(SocketAddress localAddress, ChannelPromise promise);
/**
* 连接远程ip地址
*/
void connect(SocketAddress remoteAddress, SocketAddress localAddress, ChannelPromise promise);
/**
* 断开连接,完成后通知ChannelPromise
*/
void disconnect(ChannelPromise promise);
/**
* 关闭channel,通知ChannelPromise
*/
void close(ChannelPromise promise);
/**
* 关闭,不处罚任何事件
*/
void closeForcibly();
/**
* 注销channel,通知ChannelPromise
*/
void deregister(ChannelPromise promise);
/**
* 调用读取操作
*/
void beginRead();
/**
* 调用写操作
*/
void write(Object msg, ChannelPromise promise);
/**
* 清空所有通过ChannelPromise预定的写操作
*/
void flush();
ChannelPromise voidPromise();
/**
* 返回存储待处理写入请求的Channel的ChannelOutboundBuffer。
*/
ChannelOutboundBuffer outboundBuffer();
}
}
public abstract class AbstractNioChannel extends AbstractChannel {
private final SelectableChannel ch;
protected final int readInterestOp;
volatile SelectionKey selectionKey;
boolean readPending;
private final Runnable clearReadPendingRunnable = new Runnable() {
@Override
public void run() {
clearReadPending0();
}
};
private ChannelPromise connectPromise;
private Future<?> connectTimeoutFuture;
private SocketAddress requestedRemoteAddress;
}
以上是Channel
接口和AbstractNioChannel
的抽象类,这里给大家精简了下,从Channel
定义的各个方法可以看出,netty的Channel
是对原始Channel
的一层封装。其中所有的nio的操作封装在了Unsafe
中,并进行了一定的增强,例如回调之类的。从AbstractNioChannel
可以更加直观的看出,netty对Channel
SelectionKey
的封装,并添加了自己的回调ChannelPromise
从而使方法更加易于使用。
ChannelPipeline
的初始化
public abstract class AbstractChannel extends DefaultAttributeMap implements Channel {
...其余略...
private final DefaultChannelPipeline pipeline;
protected AbstractChannel(Channel parent) {
this.parent = parent;
id = newId();
unsafe = newUnsafe();
pipeline = newChannelPipeline();
}
protected DefaultChannelPipeline newChannelPipeline() {
return new DefaultChannelPipeline(this);
}
}
ChannelPipeline
内部结构概述
public class DefaultChannelPipeline implements ChannelPipeline {
final AbstractChannelHandlerContext head;
final AbstractChannelHandlerContext tail;
private final Channel channel;
private final ChannelFuture succeededFuture;
protected DefaultChannelPipeline(Channel channel) {
this.channel = ObjectUtil.checkNotNull(channel, "channel");
succeededFuture = new SucceededChannelFuture(channel, null);
voidPromise = new VoidChannelPromise(channel, true);
tail = new TailContext(this);
head = new HeadContext(this);
head.next = tail;
tail.prev = head;
}
...略
final class TailContext extends AbstractChannelHandlerContext implements ChannelInboundHandler {
TailContext(DefaultChannelPipeline pipeline) {
super(pipeline, null, TAIL_NAME, TailContext.class);
setAddComplete();
}
... 略
}
final class HeadContext extends AbstractChannelHandlerContext
implements ChannelOutboundHandler, ChannelInboundHandler {
private final Unsafe unsafe;
HeadContext(DefaultChannelPipeline pipeline) {
super(pipeline, null, HEAD_NAME, HeadContext.class);
unsafe = pipeline.channel().unsafe();
setAddComplete();
}
...略
}
}
上面列举了ChannelPipeline
的创建,以及ChannelPipeline
的内部结构。可以看出它维护了一个双向链表。我们在添加handler的时候就是往这个链表中添加的。
ChannelHandler
添加进ChannelPipeline
后会被封装成ChannelHandlerContext
,会判断是ChannelInboundHandler
还是ChannelOutboundHandler
的子类,对inbound
和outbound
这两个属性进行赋值,ChannelInboundHandler
的子类inbound
为true,outbound
为false,ChannelOutboundHandler
反之。ChannelPipeline
内部调用方法时,会使用fireXXXXX()
的方法,会利用责任链模式进行调用,这时候会用到这个属性进行判断,是否有对应方法,从而进行调用(后面会详细讲解下)。
final class DefaultChannelHandlerContext extends AbstractChannelHandlerContext {
DefaultChannelHandlerContext(
DefaultChannelPipeline pipeline, EventExecutor executor, String name, ChannelHandler handler) {
super(pipeline, executor, name, isInbound(handler), isOutbound(handler));
if (handler == null) {
throw new NullPointerException("handler");
}
this.handler = handler;
}
private static boolean isInbound(ChannelHandler handler) {
return handler instanceof ChannelInboundHandler;
}
private static boolean isOutbound(ChannelHandler handler) {
return handler instanceof ChannelOutboundHandler;
}
private AbstractChannelHandlerContext findContextInbound() {
AbstractChannelHandlerContext ctx = this;
do {
ctx = ctx.next;
} while (!ctx.inbound);
return ctx;
}
private AbstractChannelHandlerContext findContextOutbound() {
AbstractChannelHandlerContext ctx = this;
do {
ctx = ctx.prev;
} while (!ctx.outbound);
return ctx;
}
}
这里就用了责任链的方式调用方法,确定下一个调用哪一个节点,就是通过inbound
outbound
这两个字段决定的。
public final void read() {
...省略掉部分无用代码
final ChannelConfig config = config();
final ChannelPipeline pipeline = pipeline();
ByteBuf byteBuf = null;
boolean close = false;
try {
do {
byteBuf = allocHandle.allocate(allocator);
pipeline.fireChannelRead(byteBuf);
byteBuf = null;
} while (allocHandle.continueReading());
pipeline.fireChannelReadComplete();
if (close) {
closeOnRead(pipeline);
}
}
}
@Override
public ChannelHandlerContext fireChannelRead(final Object msg) {
invokeChannelRead(findContextInbound(), msg);
return this;
}
static void invokeChannelRead(final AbstractChannelHandlerContext next, Object msg) {
//如果msg实现了ReferenceCounted,进行特殊操作
final Object m = next.pipeline.touch(ObjectUtil.checkNotNull(msg, "msg"), next);
EventExecutor executor = next.executor();
if (executor.inEventLoop()) {
next.invokeChannelRead(m);
} else {
executor.execute(new Runnable() {
@Override
public void run() {
next.invokeChannelRead(m);
}
});
}
}
private void invokeChannelRead(Object msg) {
if (invokeHandler()) {
try {
//调用下一个节点的channelRead方法
((ChannelInboundHandler) handler()).channelRead(this, msg);
} catch (Throwable t) {
invokeExceptionCaught(t);
}
} else {
fireChannelRead(msg);
}
}
下面就是调用你自定义的ChannelInboundHandler
子类的覆盖方法了,这里就不过多赘述。
EventLoopGroup初始化创建的时候,会创建对应数量的EventLoop,如果没有指定,默认创建cpu核心数量*2个EventLoop
public abstract class MultithreadEventLoopGroup extends MultithreadEventExecutorGroup implements EventLoopGroup {
//默认线程数是cpu核心的2倍
static {
DEFAULT_EVENT_LOOP_THREADS = Math.max(1, SystemPropertyUtil.getInt(
"io.netty.eventLoopThreads", NettyRuntime.availableProcessors() * 2));
if (logger.isDebugEnabled()) {
logger.debug("-Dio.netty.eventLoopThreads: {}", DEFAULT_EVENT_LOOP_THREADS);
}
}
}
public abstract class MultithreadEventExecutorGroup extends AbstractEventExecutorGroup {
protected MultithreadEventExecutorGroup(int nThreads, Executor executor,
EventExecutorChooserFactory chooserFactory, Object... args) {
children = new EventExecutor[nThreads];
for (int i = 0; i < nThreads; i ++) {
boolean success = false;
try {
//创建对应数量的EventLoop
children[i] = newChild(executor, args);
success = true;
}
}
chooser = chooserFactory.newChooser(children);
final FutureListener<Object> terminationListener = new FutureListener<Object>() {
@Override
public void operationComplete(Future<Object> future) throws Exception {
if (terminatedChildren.incrementAndGet() == children.length) {
terminationFuture.setSuccess(null);
}
}
};
for (EventExecutor e: children) {
e.terminationFuture().addListener(terminationListener);
}
Set<EventExecutor> childrenSet = new LinkedHashSet<EventExecutor>(children.length);
Collections.addAll(childrenSet, children);
readonlyChildren = Collections.unmodifiableSet(childrenSet);
}
}
将EventLoop封装进EventExecutorChooser
@Override
public EventExecutorChooser newChooser(EventExecutor[] executors) {
if (isPowerOfTwo(executors.length)) {
return new PowerOfTwoEventExecutorChooser(executors);
} else {
return new GenericEventExecutorChooser(executors);
}
}
此处借助EchoServer
启动分析EventLoop方法执行过程(不感兴趣的可以跳过)
如果你服务设置了主从线程,在启动的时候,就会使用主线程启动服务。
final ChannelFuture initAndRegister() {
...省略部分代码
ChannelFuture regFuture = config().group().register(channel);
}
@Override
public ChannelFuture register(Channel channel) {
//从EventExecutorChooser获取到EventLoop注册Channel
return next().register(channel);
}
protected abstract class AbstractUnsafe implements Unsafe {
public final void register(EventLoop eventLoop, final ChannelPromise promise) {
try {
eventLoop.execute(new Runnable() {
@Override
public void run() {
register0(promise);
}
});
}
}
}
//将任务先添加进队列,
private void execute(Runnable task, boolean immediate) {
boolean inEventLoop = inEventLoop();
addTask(task);
if (!inEventLoop) {
//主线程轮循,监听事件
startThread();
}
...省略无用代码
}
protected void addTask(Runnable task) {
ObjectUtil.checkNotNull(task, "task");
if (!offerTask(task)) {
reject(task);
}
}
final boolean offerTask(Runnable task) {
if (isShutdown()) {
reject();
}
return taskQueue.offer(task);
}
startThread();
比较核心单独说一下,他会启动一个线程
private void doStartThread() {
assert thread == null;
executor.execute(new Runnable() {
@Override
public void run() {
...省略无用代码
try {
SingleThreadEventExecutor.this.run();
success = true;
}
}
});
}
//execute没啥好说的了,就是启动线程
public void execute(Runnable command) {
threadFactory.newThread(command).start();
}
protected void run() {
for (;;) {
else if (strategy > 0) {
final long ioStartTime = System.nanoTime();
try {
processSelectedKeys();
} finally {
// Ensure we always run tasks.
final long ioTime = System.nanoTime() - ioStartTime;
ranTasks = runAllTasks(ioTime * (100 - ioRatio) / ioRatio);
}
} else {
//执行前天添加的任务
ranTasks = runAllTasks(0); // This will run the minimum number of tasks
}
}
}
processSelectedKeys();
就是正常执行读取连接的操作入口,runAllTasks( );
就是上面添加的匿名内部类的执行入口
new Runnable() {
@Override
public void run() {
register0(promise);
}
}
这个从图中可以看出它就是对java.util.concurrent.Future
的拓展。
这里我们主要看一下它扩展的回调机制
public Promise<V> await() throws InterruptedException {
//根据有无结果判断当前任务是否完成
if (isDone()) {
return this;
}
if (Thread.interrupted()) {
throw new InterruptedException(toString());
}
checkDeadLock();
synchronized (this) {
while (!isDone()) {
incWaiters();
try {
//线程进入等待状态
wait();
} finally {
decWaiters();
}
}
}
return this;
}
private static boolean isDone0(Object result) {
return result != null && result != UNCANCELLABLE;
}
与之对应的就是notify了
private void notifyListenersNow() {
Object listeners;
synchronized (this) {
// Only proceed if there are listeners to notify and we are not already notifying listeners.
if (notifyingListeners || this.listeners == null) {
return;
}
//用完就删
notifyingListeners = true;
listeners = this.listeners;
this.listeners = null;
}
for (;;) {
if (listeners instanceof DefaultFutureListeners) {
notifyListeners0((DefaultFutureListeners) listeners);
} else {
notifyListener0(this, (GenericFutureListener<?>) listeners);
}
synchronized (this) {
if (this.listeners == null) {
// Nothing can throw from within this method, so setting notifyingListeners back to false does not
// need to be in a finally block.
notifyingListeners = false;
return;
}
listeners = this.listeners;
this.listeners = null;
}
}
}
private static void notifyListener0(Future future, GenericFutureListener l) {
try {
//调用自定义listener
l.operationComplete(future);
} catch (Throwable t) {
if (logger.isWarnEnabled()) {
logger.warn("An exception was thrown by " + l.getClass().getName() + ".operationComplete()", t);
}
}
}
最后我们再来看下Bootstrap,核心部分上面已经讲完了,这里就不多赘述,这就简述下
public abstract class AbstractBootstrap{
private static final Map.Entry<ChannelOption<?>, Object>[] EMPTY_OPTION_ARRAY = new Map.Entry[0];
private static final Map.Entry<AttributeKey<?>, Object>[] EMPTY_ATTRIBUTE_ARRAY = new Map.Entry[0];
volatile EventLoopGroup group;
private volatile ChannelFactory<? extends C> channelFactory;
private volatile SocketAddress localAddress;
private final Map<ChannelOption<?>, Object> options = new LinkedHashMap<ChannelOption<?>, Object>();
private final Map<AttributeKey<?>, Object> attrs = new ConcurrentHashMap<AttributeKey<?>, Object>();
private volatile ChannelHandler handler;
}
public class ServerBootstrap extends AbstractBootstrap{
private final Map<ChannelOption<?>, Object> childOptions = new LinkedHashMap<ChannelOption<?>, Object>();
private final Map<AttributeKey<?>, Object> childAttrs = new ConcurrentHashMap<AttributeKey<?>, Object>();
private final ServerBootstrapConfig config = new ServerBootstrapConfig(this);
private volatile EventLoopGroup childGroup;
private volatile ChannelHandler childHandler;
}
private ChannelFuture doBind(final SocketAddress localAddress) {
//初始化并注册一个 Channel 对象,pipeline中添加ServerBootstrapAcceptor,处理连理连接事件,
// ChannelFuture regFuture = config().group().register(channel);启动线程循环监听事件
final ChannelFuture regFuture = initAndRegister();
final Channel channel = regFuture.channel();
if (regFuture.cause() != null) {
return regFuture;
}
//因为是异步,不能保证是否完成
//绑定Channel端口,并注册channel到selectionKey中
if (regFuture.isDone()) {
// 注册完成
ChannelPromise promise = channel.newPromise();
doBind0(regFuture, channel, localAddress, promise);
return promise;
} else {
// 注册还未完成
final PendingRegistrationPromise promise = new PendingRegistrationPromise(channel);
regFuture.addListener(new ChannelFutureListener() {
@Override
public void operationComplete(ChannelFuture future) throws Exception {
Throwable cause = future.cause();
if (cause != null) {
// EventLoop 上的注册失败,因此一旦我们尝试访问 Channel 的 EventLoop,就直接使 ChannelPromise 失败,以免导致 IllegalStateException。
promise.setFailure(cause);
} else {
// 注册成功,所以设置正确的执行器来使用。
// See https://github.com/netty/netty/issues/2586
promise.registered();
//绑定端口
doBind0(regFuture, channel, localAddress, promise);
}
}
});
return promise;
}
}
至此,Netty源码分析就结束了,大部分都已经讲完,感兴趣的朋友可以跟着
ServerBootstrap
的源码跑一下,大部分都明白了,本来上一篇博客写了ServerBootstrap
启动过程分析,但是觉得又臭又长,就给删了。就是跑一边代码,谁不会呢,这里就简述下关键的部分。还有其他部分,后面看心情决定要不要写博客了,反正也没人看~~~