- 最小二乘法(OLS)python 实践
参考链接:1,基本原理:https://zhuanlan.zhihu.com/p/1492809412,python实现:https://zhuanlan.zhihu.com/p/22692029实现结果线性回归:#--coding:utf-8--#简单线性回归demoimportnumpyasnpimportmatplotlib.pyplotaspltimportstatsmodels.apia
- Open3D 点到面的ICP配准算法
AtlasCloud
python点云数据处理算法人工智能python矩阵numpy
目录一、算法原理1、算法概述2、点到平面ICP精配准3、参考文献二、主要函数三、代码实现四、结果展示1、初始位置2、配准结果一、算法原理1、算法概述 点到平面度量通常使用标准非线性最小二乘法来求解,例如Levenberg-Marquardt。点到平面ICP算法的每次迭代通常比点到点算法慢,但收敛速度明显更快。两个点云之间的相对旋转小于30°,在旋转矩阵中用θ替换sinθ,用1替换cosθ实现用线
- 贝叶斯回归:从概率视角量化预测的不确定性
大千AI助手
人工智能Python#OTHER回归数据挖掘人工智能机器学习算法贝叶斯
本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!贝叶斯方法在回归问题中的应用被称为贝叶斯回归(BayesianRegression)。与传统频率派的线性回归(如最小二乘法)不同,贝叶斯回归的核心思想是:将回归参数(如权重系数)视为随机变量,通过贝叶斯定理结合先验分布和观测数据,推导出参数的后验分布,
- 【零基础学AI】 第10讲:线性回归
1989
0基础学AI人工智能线性回归算法python回归numpy开源
本节课你将学到理解线性回归的原理和应用场景掌握最小二乘法的基本思想使用Python构建房价预测模型学会评估回归模型的性能指标开始之前环境要求Python3.8+JupyterNotebook或任何PythonIDE需要安装的包pipinstallscikit-learnpandasmatplotlibseabornnumpy前置知识第9讲:机器学习概述基本的Python和数据处理能力核心概念什么是
- open3d 点云拟合圆 mesh
扶子
python点云处理numpypythonopen3d经验分享点云拟合圆mesh
1、功能介绍:使用numpy和open3d进行二维圆拟合与三维可视化的完整示例。主要功能是对带有噪声的二维点云数据进行最小二乘法圆拟合,并使用open3d创建三角网格来可视化拟合出的圆形区域。2、代码部分:importnumpyasnpimportopen3daso3d#参数设置radius=5.0#圆的半径center=[0,0]#圆心num_points=200#点的数量noise_level
- 【GNSS原理】【最小二乘法】Chapter.5 GNSS定位算法——LS和WLS方法 [2025年4月]
牵星术小白
GNSS原理算法最小二乘法机器学习c++
Chapter.5GNSS定位算法——LS和WLS方法作者:齐花Guyc(CAUC)文章目录Chapter.5GNSS定位算法——LS和WLS方法一、引言二、LS方法三、WLS方法四、GNSSPVT解算流程中的LS和WLS一、引言在GNSS定位中,最小二乘法是一种核心算法,用于根据接收机获取的观测数据(如伪距、载波相位等)估算用户的位置、速度和时间偏差(PVT解算)。二、LS方法最小二乘法的核心是
- 最小二乘法的理论推导
士兵突击许三多
最小二乘法最小二乘法
最小二乘法的理论推导最小二乘法是一种通过最小化误差平方和来估计模型参数的方法。下面我将详细推导线性最小二乘法的理论过程,并给出相应的LaTeX公式。问题描述给定一组观测数据点(xi,yi),i=1,2,...,n(x_i,y_i),i=1,2,...,n(xi,yi),i=1,2,...,n,我们希望找到线性模型:y=ax+by=ax+by=ax+b使得模型预测值与实际观测值之间的误差平方和最小。
- Matlab 点云加权最小二乘法优化
完美代码
matlab最小二乘法开发语言点云
Matlab点云加权最小二乘法优化随着计算机视觉和三维图形学的发展,点云数据的处理和分析变得越来越重要。点云是三维空间中由大量的点组成的数据集合,常用于描述物体的形状和表面几何信息。在点云处理中,经常需要使用迭代加权最小二乘法对点云数据进行拟合优化。本文将介绍使用Matlab实现点云迭代加权最小二乘法优化的方法,并提供相应的源代码。点云表达首先,我们需要将点云数据以合适的方式表示在Matlab中。
- 最小二乘法
superdont
计算机视觉入门最小二乘法算法机器学习matlab矩阵人工智能计算机视觉
最小二乘法(LeastSquaresMethod)是一种数学优化技术,它通过最小化误差的平方和寻找数据的最佳函数匹配。具体来说,它可以用于线性回归分析,即找到一条最佳拟合直线(或更一般的曲线或面),使得实际观察数据点到这条直线(或曲线/面)的垂直距离(也就是误差)的平方和达到最小。在数学表示上,如果有一组观测数据集((x_i,y_i)),其中(i=1,2,…,n),最小二乘法旨在找到一个模型(y=
- 最小二乘法算法(个人总结版)
爱吃辣椒的年糕
算法使用深度学习算法人工智能fpga开发信息与通信最小二乘法随笔
最小二乘法(LeastSquaresMethod)是一种通过最小化误差平方和来拟合数据的回归分析方法。它被广泛应用于线性回归、多元回归以及其他数据拟合问题中。以下是详细的教程,涵盖基本概念、数学推导、具体步骤和实现代码。1.最小二乘法基本概念最小二乘法是一种用于数据拟合的统计方法,通过最小化观测数据与模型预测值之间的误差平方和,求解模型参数。2.线性回归的最小二乘法线性回归是最简单的最小二乘法应用
- 最小二乘法,正则推导
若曦爹
https://blog.csdn.net/qq_40061206/article/details/112447541
- Blind Image Deblurring with Outlier Handling论文阅读
青铜锁00
论文阅读#退化论文阅读图像处理
BlindImageDeblurringwithOutlierHandling1.论文的研究目标与实际问题意义1.1研究目标1.2实际问题与产业意义2.论文提出的新方法、公式及优势2.1新思路与核心模型框架2.2鲁棒数据保真项的定义与数学特性2.3优化方法:迭代重加权最小二乘法(IRLS)2.3.1潜像估计xxx2.3.2模糊核估计kkk2.3.3权重机制的意义2.4与传统方法的对比与优势2.5非
- 白平衡校正中冯・克里兹参数计算过程详解
大熊背
ISP基础算法计算机视觉算法人工智能白平衡校正
目录一、概述二、算法详解算法核心逻辑初始化与数据结构迭代匹配过程鲁棒性设计三、算法的简化版实例步骤1:构造直方图步骤2:计算点对(x,y)步骤3:最小二乘法拟合直线结果解释关键原理总结一、概述博文基于直方图的冯・克里斯特映射白平衡校正讲解方法比较杂乱,本博文是针对基于直方图的冯・克里斯特映射白平衡校正博文的进一步详细的解答,参考相关论文:《IlluminantChangeEstimationvia
- Eigen 库实现最小二乘算法(Least Squares)
点云SLAM
算法算法Eigen数据工具库最小二乘算法SVD分解QR分解超定方程高斯-牛顿法
一、最小二乘法基本原理给定一个超定方程组Ax=bAx=bAx=b,当A∈Rm×n,m>nA\in\mathbb{R}^{m\timesn},m>nA∈Rm×n,m>n时,一般无法精确解出xxx。因此我们寻找一个使残差∥Ax−b∥22\|Ax-b\|_2^2∥Ax−b∥22最小的解。其解析解为:x=(ATA)−1ATbx=(A^TA)^{-1}A^Tbx=(ATA)−1ATb或者使用更稳定的方式:Q
- 概率论的基本概念
Mr.魏(魏先生)
概率论的起源与发展概率论产生于十六世纪十六世纪中叶,卡当在赌博时研究不输的方法1654年,德·美黑——“合理分配赌注问题”1657年,惠更斯——《论机会游戏的计算》1933年,柯尔莫哥洛夫——《概率论的基本概念》数理统计的历史1763年,贝叶斯贝叶斯方法1809年,高斯和勒让德——最小二乘法皮尔逊、戈赛特、费歇——频率曲线、多元分析、估计和方差分析概率论是数理统计学的基础,数理统计学是概率论的一种
- 极大似然估计与机器学习
xsddys
机器学习人工智能
复习概统的时候突然发现好像极大似然估计MLE与机器学习的数据驱动非常相似,都是采样样本然后估计模型参数。貌似,后知后觉的才意识到极大似然估计就是机器学习有效的数学保证下面以拟合线性分布的最小二乘与分类问题为例推到以下如何从似然函数推导出MSE损失与交叉熵损失一、线性回归的最小二乘法1.概率模型设定假设数据由线性模型生成,且观测噪声服从正态分布:y=wTx+ϵ,ϵ∼N(0,σ2)y=\mathbf{
- Python 用 NumPy 实现简单的线性回归
Python编程之道
pythonnumpy线性回归ai
Python用NumPy实现简单的线性回归关键词:Python、NumPy、线性回归、机器学习、最小二乘法摘要:本文深入探讨了如何使用Python的NumPy库实现简单的线性回归。线性回归是机器学习中基础且重要的算法,在预测分析等领域有广泛应用。我们将从线性回归的核心概念入手,详细介绍其原理和架构,阐述核心算法的原理及具体操作步骤,并结合数学模型和公式进行深入讲解。通过实际的项目实战案例,展示如何
- 光流 | Matlab工具中的光流算法
单北斗SLAMer
OpticalFlow(光流)算法图像处理信息与通信matlab
在MATLAB中,光流算法用于估计图像序列中物体的运动。以下是详细解释及实现步骤:1.光流算法基础光流基于两个核心假设:亮度恒定:同一物体在连续帧中的像素亮度不变。微小运动:相邻帧之间的时间间隔短,物体运动幅度小。常见算法:Lucas-Kanade(局部方法):假设局部窗口内光流恒定,通过最小二乘法求解。Horn-Schunck(全局方法):引入全局平滑性约束,通过优化整体能量函数求解。Farne
- PCL 将点云投影到拟合平面
MelaCandy
PCL点云算法与实战案例平面3d计算机视觉c++算法
PCL点云算法汇总及实战案例汇总的目录地址链接:PCL点云算法与项目实战案例汇总(长期更新)一、概述点云投影到拟合平面是指将三维点云数据中的点投影到与其最接近的二维平面上。通过投影到平面,可以消除数据的高度变化或Z轴信息,使得点云数据在平面上更加集中和规整。这在点云简化、平面特征提取和2D视觉分析中非常有用。1.1原理平面拟合和投影的过程通常涉及以下几个步骤:1.平面拟合:使用最小二乘法拟合点云的
- 最小二乘法实现圆的拟合
#君#
笔记最小二乘法算法机器学习
示例1:#include#include#include#include//二维点结构体structPoint2D{doublex;doubley;};//圆结构体(结果容器)structCircle{Point2Dcenter;doubleradius;boolvalid=false;//拟合有效性标志};//最小二乘圆拟合核心算法CirclefitCircleLeastSquares(cons
- 线性回归算法解密:从基础到实战的完整指南
智能计算研究中心
其他
内容概要线性回归算法是统计学与机器学习中一种常用的预测方法,它的核心思想是通过学习输入特征与输出变量之间的关系,以便对未来的数据进行预测。本文将从线性回归的基本概念入手,逐步深入,帮助读者全面掌握这一算法。本文旨在为读者提供系统而清晰的线性回归知识框架,以便在实际应用中能够灵活运用。首先,我们将解释线性回归的数学原理,包括如何构建模型以及利用最小二乘法进行参数估计。接着,针对数据预处理与特征选择,
- 基于随机森林和Xgboost对肥胖风险的多类别预测
i阿极
机器学习机器学习案例XGBoot随机森林python
基于随机森林和Xgboost对肥胖风险的多类别预测作者:i阿极作者简介:数据分析领域优质创作者、多项比赛获奖者:博主个人首页如果觉得文章不错或能帮助到你学习,可以点赞收藏评论+关注哦!如果有小伙伴需要数据集和学习交流,文章下方有交流学习区!一起学习进步!大家好,我i阿极。喜欢本专栏的小伙伴,请多多支持专栏案例:机器学习案例机器学习(一):线性回归之最小二乘法机器学习(二):线性回归之梯度下降法机器
- 量化交易之数学与统计学基础2.3——线性代数与矩阵运算 | 线性方程组
灏瀚星空
回归最小二乘法数据挖掘python笔记开源信息可视化
量化交易之数学与统计学基础2.3——线性代数与矩阵运算|线性方程组第二部分:线性代数与矩阵运算第3节:线性方程组:多因子模型中的回归分析与最小二乘法求解一、引言在量化投资领域,多因子模型是解析资产收益率的核心工具之一。其核心假设是资产收益率由多个因子的线性组合驱动,而最小二乘法(OLS)作为求解线性回归参数的经典方法,为因子系数估计提供了理论支撑和实践工具。本文将深入解析多因子模型的线性方程组构建
- OpenCV 图形API(66)图像结构分析和形状描述符------将一条直线拟合到三维点集上函数fitLine3D()
村北头的码农
OpenCVopencv人工智能计算机视觉
操作系统:ubuntu22.04OpenCV版本:OpenCV4.9IDE:VisualStudioCode编程语言:C++11算法描述拟合一条直线到3D点集。该函数通过最小化∑iρ(ri)来将一条直线拟合到3D点集,其中ri是第i个点与直线之间的距离,ρ®是距离函数,可以是以下之一:DIST_L2ρ(r)=r2/2(最简单且最快的最小二乘法)\rho(r)=r^2/2\quad\text{(最简
- PCL学习:基于多项式平滑点云及法线估计的曲面重建
JoannaJuanCV
PCL学习
一.基于多项式平滑点云及法线估计的曲面重建本小节介绍基于移动最小二乘法(MLS)的法线估计、点云平滑和数据重采样。有时,测量较小的对象时会产生一些误差,这些误差所造成的不规则数据如果直接拿来曲面重建的话会使重建的曲面不光滑或者有漏洞。这些不规则很难用统计分析消除,所以为了建立完整的模型必须对表面进行平滑处理和漏洞修复。在不能进行额外扫描的情况下,我们可以通过对数据重采样来解决这一问题,重采样算法通
- 机器学习基础 - 回归模型之线性回归
yousuotu
面试题机器学习回归线性回归
机器学习:线性回归文章目录机器学习:线性回归1.线性回归1.简介2.线性回归如何训练?1.损失函数2.正规方程3.梯度下降法4.两种方法的比较2.岭回归岭回归与线性回归3.Lasso回归4.ElasticNet回归LWR-局部加权回归QA1.最小二乘法估计2.最小二乘法的几何解释3.从概率角度看最小二乘法4.推一下线性回归的反向传播5.什么时候使用岭回归?6.什么时候使用L1正则化?7.什么时候使
- 【MATLAB代码例程】AOA与TOA结合的高精度平面地位,适用于四个基站的情况,附完整的代码
MATLAB卡尔曼
MATLAB定位程序与详解matlab平面开发语言
本代码实现了一种基于到达角(AOA)和到达时间(TOA)的混合定位算法,适用于二维平面内移动或静止目标的定位。通过4个基站的协同测量,结合最小二乘法和几何解算,能够有效估计目标位置,并支持噪声模拟、误差分析和可视化输出。适用于室内定位、无人机导航、工业监测等场景。文章目录运行结果MATLAB源代码代码讲解算法原理技术亮点应用场景扩展性建议运行结果定位示意图:运行结果:MATLAB源代码%AOA与T
- TOA与AOA联合定位的高精度算法,三维、4个基站的情况,MATLAB例程,附完整代码
MATLAB卡尔曼
MATLAB定位程序与详解算法matlab开发语言
本代码实现了三维空间内目标的高精度定位,结合到达角(AOA)和到达时间(TOA)两种测量方法,通过4个基站的协同观测,利用最小二乘法解算目标位置。代码支持噪声模拟、误差分析及三维可视化,适用于无人机导航、室内定位等场景。订阅专栏后可获得完整代码文章目录运行结果MATLAB例程代码介绍算法原理技术亮点代码结构应用场景扩展建议运行结果运行结果:命令行输出截图:部分代码截图:
- 线性回归
进来有惊喜
线性回归机器学习回归
1、线性回归的简单介绍2.安装第三方库3、一元线性回归示例说明4、多元线性回归示例5.总结1.线性回归的介绍定义:线性回归是一种用于建立变量之间线性关系的统计模型,通过一个或多个自变量来预测一个因变量的值。原理:其核心原理是最小二乘法,即通过寻找一条直线(在一元线性回归中)或一个超平面(在多元线性回归中),使得数据点到这条直线或超平面的距离的平方和最小。这条直线或超平面就是对数据的最佳拟合。分类:
- MATLAB在非线性规划中的应用实践
一朵小小玫
MATLAB非线性规划最小二乘法遗传算法优化方法选择
MATLAB在非线性规划中的应用实践背景简介随着数学建模和计算技术的发展,非线性规划(Non-LinearProgramming,NLP)在工程和科学领域得到了广泛的应用。MATLAB作为一种强大的数学软件,提供了丰富的内置函数和工具箱,专门用于解决非线性规划问题。本文将探讨MATLAB在非线性规划中的应用,包括最小二乘曲线拟合、遗传算法的使用,以及如何根据问题类型选择合适的优化方法。最小二乘法与
- Spring中@Value注解,需要注意的地方
无量
springbean@Valuexml
Spring 3以后,支持@Value注解的方式获取properties文件中的配置值,简化了读取配置文件的复杂操作
1、在applicationContext.xml文件(或引用文件中)中配置properties文件
<bean id="appProperty"
class="org.springframework.beans.fac
- mongoDB 分片
开窍的石头
mongodb
mongoDB的分片。要mongos查询数据时候 先查询configsvr看数据在那台shard上,configsvr上边放的是metar信息,指的是那条数据在那个片上。由此可以看出mongo在做分片的时候咱们至少要有一个configsvr,和两个以上的shard(片)信息。
第一步启动两台以上的mongo服务
&nb
- OVER(PARTITION BY)函数用法
0624chenhong
oracle
这篇写得很好,引自
http://www.cnblogs.com/lanzi/archive/2010/10/26/1861338.html
OVER(PARTITION BY)函数用法
2010年10月26日
OVER(PARTITION BY)函数介绍
开窗函数 &nb
- Android开发中,ADB server didn't ACK 解决方法
一炮送你回车库
Android开发
首先通知:凡是安装360、豌豆荚、腾讯管家的全部卸载,然后再尝试。
一直没搞明白这个问题咋出现的,但今天看到一个方法,搞定了!原来是豌豆荚占用了 5037 端口导致。
参见原文章:一个豌豆荚引发的血案——关于ADB server didn't ACK的问题
简单来讲,首先将Windows任务进程中的豌豆荚干掉,如果还是不行,再继续按下列步骤排查。
&nb
- canvas中的像素绘制问题
换个号韩国红果果
JavaScriptcanvas
pixl的绘制,1.如果绘制点正处于相邻像素交叉线,绘制x像素的线宽,则从交叉线分别向前向后绘制x/2个像素,如果x/2是整数,则刚好填满x个像素,如果是小数,则先把整数格填满,再去绘制剩下的小数部分,绘制时,是将小数部分的颜色用来除以一个像素的宽度,颜色会变淡。所以要用整数坐标来画的话(即绘制点正处于相邻像素交叉线时),线宽必须是2的整数倍。否则会出现不饱满的像素。
2.如果绘制点为一个像素的
- 编码乱码问题
灵静志远
javajvmjsp编码
1、JVM中单个字符占用的字节长度跟编码方式有关,而默认编码方式又跟平台是一一对应的或说平台决定了默认字符编码方式;2、对于单个字符:ISO-8859-1单字节编码,GBK双字节编码,UTF-8三字节编码;因此中文平台(中文平台默认字符集编码GBK)下一个中文字符占2个字节,而英文平台(英文平台默认字符集编码Cp1252(类似于ISO-8859-1))。
3、getBytes()、getByte
- java 求几个月后的日期
darkranger
calendargetinstance
Date plandate = planDate.toDate();
SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd");
Calendar cal = Calendar.getInstance();
cal.setTime(plandate);
// 取得三个月后时间
cal.add(Calendar.M
- 数据库设计的三大范式(通俗易懂)
aijuans
数据库复习
关系数据库中的关系必须满足一定的要求。满足不同程度要求的为不同范式。数据库的设计范式是数据库设计所需要满足的规范。只有理解数据库的设计范式,才能设计出高效率、优雅的数据库,否则可能会设计出错误的数据库.
目前,主要有六种范式:第一范式、第二范式、第三范式、BC范式、第四范式和第五范式。满足最低要求的叫第一范式,简称1NF。在第一范式基础上进一步满足一些要求的为第二范式,简称2NF。其余依此类推。
- 想学工作流怎么入手
atongyeye
jbpm
工作流在工作中变得越来越重要,很多朋友想学工作流却不知如何入手。 很多朋友习惯性的这看一点,那了解一点,既不系统,也容易半途而废。好比学武功,最好的办法是有一本武功秘籍。研究明白,则犹如打通任督二脉。
系统学习工作流,很重要的一本书《JBPM工作流开发指南》。
本人苦苦学习两个月,基本上可以解决大部分流程问题。整理一下学习思路,有兴趣的朋友可以参考下。
1 首先要
- Context和SQLiteOpenHelper创建数据库
百合不是茶
androidContext创建数据库
一直以为安卓数据库的创建就是使用SQLiteOpenHelper创建,但是最近在android的一本书上看到了Context也可以创建数据库,下面我们一起分析这两种方式创建数据库的方式和区别,重点在SQLiteOpenHelper
一:SQLiteOpenHelper创建数据库:
1,SQLi
- 浅谈group by和distinct
bijian1013
oracle数据库group bydistinct
group by和distinct只了去重意义一样,但是group by应用范围更广泛些,如分组汇总或者从聚合函数里筛选数据等。
譬如:统计每id数并且只显示数大于3
select id ,count(id) from ta
- vi opertion
征客丶
macoprationvi
进入 command mode (命令行模式)
按 esc 键
再按 shift + 冒号
注:以下命令中 带 $ 【在命令行模式下进行】,不带 $ 【在非命令行模式下进行】
一、文件操作
1.1、强制退出不保存
$ q!
1.2、保存
$ w
1.3、保存并退出
$ wq
1.4、刷新或重新加载已打开的文件
$ e
二、光标移动
2.1、跳到指定行
数字
- 【Spark十四】深入Spark RDD第三部分RDD基本API
bit1129
spark
对于K/V类型的RDD,如下操作是什么含义?
val rdd = sc.parallelize(List(("A",3),("C",6),("A",1),("B",5))
rdd.reduceByKey(_+_).collect
reduceByKey在这里的操作,是把
- java类加载机制
BlueSkator
java虚拟机
java类加载机制
1.java类加载器的树状结构
引导类加载器
^
|
扩展类加载器
^
|
系统类加载器
java使用代理模式来完成类加载,java的类加载器也有类似于继承的关系,引导类是最顶层的加载器,它是所有类的根加载器,它负责加载java核心库。当一个类加载器接到装载类到虚拟机的请求时,通常会代理给父类加载器,若已经是根加载器了,就自己完成加载。
虚拟机区分一个Cla
- 动态添加文本框
BreakingBad
文本框
<script> var num=1; function AddInput() { var str=""; str+="<input 
- 读《研磨设计模式》-代码笔记-单例模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
public class Singleton {
}
/*
* 懒汉模式。注意,getInstance如果在多线程环境中调用,需要加上synchronized,否则存在线程不安全问题
*/
class LazySingleton
- iOS应用打包发布常见问题
chenhbc
iosiOS发布iOS上传iOS打包
这个月公司安排我一个人做iOS客户端开发,由于急着用,我先发布一个版本,由于第一次发布iOS应用,期间出了不少问题,记录于此。
1、使用Application Loader 发布时报错:Communication error.please use diagnostic mode to check connectivity.you need to have outbound acc
- 工作流复杂拓扑结构处理新思路
comsci
设计模式工作算法企业应用OO
我们走的设计路线和国外的产品不太一样,不一样在哪里呢? 国外的流程的设计思路是通过事先定义一整套规则(类似XPDL)来约束和控制流程图的复杂度(我对国外的产品了解不够多,仅仅是在有限的了解程度上面提出这样的看法),从而避免在流程引擎中处理这些复杂的图的问题,而我们却没有通过事先定义这样的复杂的规则来约束和降低用户自定义流程图的灵活性,这样一来,在引擎和流程流转控制这一个层面就会遇到很
- oracle 11g新特性Flashback data archive
daizj
oracle
1. 什么是flashback data archive
Flashback data archive是oracle 11g中引入的一个新特性。Flashback archive是一个新的数据库对象,用于存储一个或多表的历史数据。Flashback archive是一个逻辑对象,概念上类似于表空间。实际上flashback archive可以看作是存储一个或多个表的所有事务变化的逻辑空间。
- 多叉树:2-3-4树
dieslrae
树
平衡树多叉树,每个节点最多有4个子节点和3个数据项,2,3,4的含义是指一个节点可能含有的子节点的个数,效率比红黑树稍差.一般不允许出现重复关键字值.2-3-4树有以下特征:
1、有一个数据项的节点总是有2个子节点(称为2-节点)
2、有两个数据项的节点总是有3个子节点(称为3-节
- C语言学习七动态分配 malloc的使用
dcj3sjt126com
clanguagemalloc
/*
2013年3月15日15:16:24
malloc 就memory(内存) allocate(分配)的缩写
本程序没有实际含义,只是理解使用
*/
# include <stdio.h>
# include <malloc.h>
int main(void)
{
int i = 5; //分配了4个字节 静态分配
int * p
- Objective-C编码规范[译]
dcj3sjt126com
代码规范
原文链接 : The official raywenderlich.com Objective-C style guide
原文作者 : raywenderlich.com Team
译文出自 : raywenderlich.com Objective-C编码规范
译者 : Sam Lau
- 0.性能优化-目录
frank1234
性能优化
从今天开始笔者陆续发表一些性能测试相关的文章,主要是对自己前段时间学习的总结,由于水平有限,性能测试领域很深,本人理解的也比较浅,欢迎各位大咖批评指正。
主要内容包括:
一、性能测试指标
吞吐量、TPS、响应时间、负载、可扩展性、PV、思考时间
http://frank1234.iteye.com/blog/2180305
二、性能测试策略
生产环境相同 基准测试 预热等
htt
- Java父类取得子类传递的泛型参数Class类型
happyqing
java泛型父类子类Class
import java.lang.reflect.ParameterizedType;
import java.lang.reflect.Type;
import org.junit.Test;
abstract class BaseDao<T> {
public void getType() {
//Class<E> clazz =
- 跟我学SpringMVC目录汇总贴、PDF下载、源码下载
jinnianshilongnian
springMVC
----广告--------------------------------------------------------------
网站核心商详页开发
掌握Java技术,掌握并发/异步工具使用,熟悉spring、ibatis框架;
掌握数据库技术,表设计和索引优化,分库分表/读写分离;
了解缓存技术,熟练使用如Redis/Memcached等主流技术;
了解Ngin
- the HTTP rewrite module requires the PCRE library
流浪鱼
rewrite
./configure: error: the HTTP rewrite module requires the PCRE library.
模块依赖性Nginx需要依赖下面3个包
1. gzip 模块需要 zlib 库 ( 下载: http://www.zlib.net/ )
2. rewrite 模块需要 pcre 库 ( 下载: http://www.pcre.org/ )
3. s
- 第12章 Ajax(中)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Optimize query with Query Stripping in Web Intelligence
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Optimize+query+with+Query+Stripping+in+Web+Intelligence
and a very straightfoward video
http://www.sdn.sap.com/irj/scn/events?rid=/library/uuid/40ec3a0c-936
- Java开发者写SQL时常犯的10个错误
tomcat_oracle
javasql
1、不用PreparedStatements 有意思的是,在JDBC出现了许多年后的今天,这个错误依然出现在博客、论坛和邮件列表中,即便要记住和理解它是一件很简单的事。开发者不使用PreparedStatements的原因可能有如下几个: 他们对PreparedStatements不了解 他们认为使用PreparedStatements太慢了 他们认为写Prepar
- 世纪互联与结盟有感
阿尔萨斯
10月10日,世纪互联与(Foxcon)签约成立合资公司,有感。
全球电子制造业巨头(全球500强企业)与世纪互联共同看好IDC、云计算等业务在中国的增长空间,双方迅速果断出手,在资本层面上达成合作,此举体现了全球电子制造业巨头对世纪互联IDC业务的欣赏与信任,另一方面反映出世纪互联目前良好的运营状况与广阔的发展前景。
众所周知,精于电子产品制造(世界第一),对于世纪互联而言,能够与结盟