- uni-app 多端开发中 AI 的集成与适配:一次开发,智能多端运行
欧阳天羲
大前端与AI的深度融合#AI与大前端框架结合篇uni-app人工智能前端
一、引言:uni-app与AI多端集成的背景在当今跨平台开发趋势下,uni-app凭借"一次编写,多端运行"的特性成为企业级应用开发的首选框架之一。随着人工智能技术的普及,将AI能力集成到多端应用中已成为提升用户体验的关键需求。然而,小程序、APP、Web等不同端的运行环境差异显著,如何实现AI功能的统一集成与高效适配成为开发难点。本文将系统讲解在uni-app框架中集成AI能力的完整方案,涵盖跨
- 大语言模型技术系列讲解:大模型应用了哪些技术
知世不是芝士
语言模型人工智能自然语言处理chatgpt大模型
为了弄懂大语言模型原理和技术细节,笔者计划展开系列学习,并将所学内容从简单到复杂的过程给大家做分享,希望能够体系化的认识大模型技术的内涵。本篇文章作为第一讲,先列出大模型使用到了哪些技术,目的在于对大模型使用的技术有个整体认知。后续我们讲一一详细讲解这些技术概念并解剖其背后原理。正文开始大语言模型(LLMs)在人工智能领域通常指的是参数量巨大、能够处理复杂任务的深度学习模型。这些模型使用的技术主要
- LLM---大语言模型技术研究报告
摘要大语言模型(LLMs)已从技术突破走向产业规模化落地。2025年,全球LLMs进入“模型即服务”(MaaS)时代,参数量级突破万亿级,多模态能力、智能体协作、专业化细分成为主流趋势。中国大模型领域在DeepSeek、通义千问、讯飞星火等头部模型推动下,实现技术突破与场景创新。本报告基于截至2025年7月的最新数据,系统梳理LLMs的技术演进、应用场景、挑战与未来方向。一、大语言模型的演进与突破
- 解释LLM怎么预测下一个词语的
ZhangJiQun&MXP
教学2024大模型以及算力2021AIpython语言模型python深度学习人工智能机器学习
解释LLM怎么预测下一个词语的通过上文词的向量进行映射在Transformer架构的大语言模型(如GPT系列、BERT等)中,词语会先被转化为词向量。在预测下一个词时,模型会基于之前所有词的向量表示(并非仅仅上一个词,但上一个词的向量是重要信息来源之一)进行计算。以GPT-2为例,在生成文本时,它会将输入文本中每个词对应的词向量依次输入到模型的多层Transformer编码器-解码器结构中。每一层
- 大语言模型:是逐字生成还是一次多词?
ZhangJiQun&MXP
教学2024大模型以及算力2021AIpython算法prompt人工智能自然语言处理均值算法
大语言模型(LLM)既可以按顺序逐个生成单词(token),也能实现一次生成多个token核心差异源于解码策略与模型架构设计一、常规“逐个生成”模式(基础逻辑)多数入门级演示或简单文本生成中,LLM会默认按“生成一个token→拼接回输入→再生成下一个”的流程,本质是自回归(Auto-Regressive)机制的基础应用。比如用小语言模型续写“今天天气____”:模型先基于“今天天气”预测第一个t
- 免费学中医,这些优质资源不容错过
少林659
零基础学中医免费学中医
零基础学中医,学中医如何入门免费学中医!问止精一书院链接:https://tool.nineya.com/qrcode/1iv54b4ts想入门中医却担心成本太高?其实有不少免费又优质的学习资源,问止中医的系列免费课程就是其中的佼佼者,涵盖理论与实操,满足不同学习者的需求。问止中医旗下的精一书院,是免费学中医的绝佳平台。由问止中医联合创始人林大栋博士主讲,课程聚焦中医结构分析、人工智能中医大脑技术
- 微软:LLM训练数据组织框架DELT
大模型任我行
大模型-模型训练人工智能自然语言处理语言模型论文笔记
标题:DataEfficacyforLanguageModelTraining来源:arXiv,2506.21545摘要数据是语言模型(LM)训练的基础。最近的研究一直致力于数据效率,其目的是通过选择训练数据的最小或最优子集来最大限度地提高性能。数据过滤、采样和选择等技术在这一领域起着至关重要的作用。为了补充这一点,我们定义了数据效能,它侧重于通过优化训练数据的组织来最大限度地提高性能,目前尚未得
- 思维树(Tree of Thoughts): 超越链式思维的AI推理新范式
司南锤
LLM人工智能
引言在人工智能快速发展的今天,大语言模型(LLM)的推理能力一直是研究的热点。从最初的直接问答,到链式思维(ChainofThoughts,CoT)的出现,再到如今的思维树(TreeofThoughts,TOT),AI的推理方式正在变得越来越接近人类的思维过程。思维树作为一种全新的推理框架,不仅继承了链式思维的优势,更通过树状结构的探索和回溯机制,实现了更加复杂和深入的推理过程。本文将深入探讨TO
- 云原生环境下部署大语言模型服务:以 DeepSeek 为例的实战教程
一ge科研小菜菜
人工智能Python编程语言语言模型人工智能自然语言处理
个人主页:一ge科研小菜鸡-CSDN博客期待您的关注一、引言随着DeepSeek、Qwen、ChatGLM等大语言模型(LLM)的开放与普及,企业将其私有化部署并服务化的需求愈发迫切。然而,从HuggingFace下载模型,到提供一个结构化、稳定、可调用的API,并不是一个简单过程。它涉及:模型推理框架(如vLLM)的集成;WebAPI封装(FastAPI等);容器化部署与资源调度;可扩展性设计与
- AttributeError: module ‘openai‘ has no attribute ‘ChatCompletion‘解决方案
爱编程的喵喵
Python基础课程pythonAttributeErroropenaiChatCompletion解决方案
大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的知识进行总结与归纳,不仅形成深入且独到的理解,而且能够帮助新手快速入门。 本文主要介绍了AttributeError:mod
- RAG技术全面对比研究:探索最优检索增强生成策略
检索增强生成(RAG)技术全景解析:从基础到前沿在当今信息爆炸的时代,如何从海量数据中快速准确地获取所需信息,是人工智能领域的一大挑战。Retrieval-AugmentedGeneration(RAG,检索增强生成)技术应运而生,它结合了检索和生成的优势,通过从大量文档中检索相关信息,再利用这些信息生成高质量的回答。本文将系统性地介绍18种RAG技术,通过概念解析、代码示例和实际应用场景分析,帮
- 用Firecrawl轻松获取网站数据,提升AI应用的效率!
人工智能我来了
人工智能AI人工智能
Firecrawl:助力AI应用的强大工具!在数字化信息爆炸的时代,如何高效地从海量网页中提取有用数据变得尤其重要。Firecrawl的问世,为我们揭开了一种便捷的方法来应对这一挑战。它不仅能够将整个网站的数据转化为适用于大语言模型(LLM)的markdown或结构化数据,还能通过单一的API实现数据抓取、爬取和提取。从此,清晰、整洁的数据触手可及。什么是Firecrawl?Firecrawl是一
- 【人工智能】 AI的进化之路:大模型如何重塑技术格局
蒙娜丽宁
Python杂谈人工智能人工智能python
《PythonOpenCV从菜鸟到高手》带你进入图像处理与计算机视觉的大门!解锁Python编程的无限可能:《奇妙的Python》带你漫游代码世界本文深入探讨了人工智能大模型的进化历程及其对技术格局的深远影响。从早期神经网络到现代大模型的突破,文章分析了关键技术进步,如Transformer架构、预训练机制和分布式计算。结合数学公式和代码示例,详细阐述了大模型的训练原理、优化方法及实际应用场景。文
- 数字人视频剪辑与数字人分身源码开发的的核心技术解析
微~18339948121
数字人分身源码数字人剪辑源码数字人源码djangopygamevirtualenvplotlyscikit-learnflasktornado
数字人视频剪辑与分身的核心技术解析数字人视频剪辑和分身技术是近年来人工智能与计算机视觉领域的热点,涉及虚拟形象生成、动作驱动、语音合成等多项技术。以下从技术实现、应用场景和工具选择三个方面展开分析。数字人视频剪辑的关键技术视频剪辑中数字人的核心在于动态形象的生成与编辑。基于深度学习的生成对抗网络(GAN)和3D建模技术可实现高保真虚拟形象构建。典型流程包括:人物建模:通过多视角图像或视频数据重建3
- 探秘AI的秘密:leaked-system-prompts
人工智能我来了
人工智能AI人工智能
揭秘:揭秘系统提示合集背后的秘密在当今这个人工智能技术迅速发展的时代,了解和使用大型语言模型(LLM)已成为技术爱好者、开发者和研究人员的共同目标。而作为核心组成部分,系统提示(systemprompts)的设计和应用直接影响了LLM的表现和功能。今天,我们将为大家揭示一个神秘而又充满吸引力的项目——“leaked-system-prompts”。这个项目为我们打开了一扇窥探这些大型语言模型系统提
- 代码探秘人工智能
万能小贤哥
人工智能
当你在手机上用语音发送消息,当短视频平台精准推送你感兴趣的内容,当智能音箱陪你聊天解闷,背后都有一位“隐形伙伴”——人工智能。它就像从科幻电影中走出的神奇力量,正悄然改变着我们的生活。今天,就让我们借助简单的Python代码,开启一场探索人工智能奥秘的奇妙之旅!人工智能:计算机的“超能力大脑”想象一下,如果给计算机装上“大脑”,让它学会像人类一样思考、学习和解决问题,会发生什么?这就是人工智能(A
- 深入探索 Vanna:让数据库交互更智能
从零开始学习人工智能
数据库交互
深入探索Vanna:让数据库交互更智能在数字化时代,与数据库进行高效交互是许多开发者、数据分析师和企业面临的挑战。传统的SQL查询编写不仅需要对数据库结构有深入的了解,还需要花费大量的时间和精力来调试和优化。Vanna,一个基于Python的开源工具,通过结合检索增强(RetrievalAugmentation)和大型语言模型(LLM),为这一问题提供了一个创新的解决方案。本文将深入探讨Vanna
- 语言的钥匙:提示工程的艺术与驾驭AI的智慧
田园Coder
人工智能科普人工智能科普
当大型语言模型(LLM)如GPT-4展现出令人惊叹的通用能力,却又伴随着“幻觉”、“黑箱”和“不可控”等阴影时,一个核心问题变得无比迫切:人类如何有效地与这些庞然大物沟通,引导它们可靠、安全、精准地完成任务?答案并非在于重新训练这头计算巨兽(成本高昂且周期漫长),而在于掌握一门新兴的关键技艺——提示工程(PromptEngineering)。提示工程,简而言之,就是精心设计输入给模型的自然语言指令
- 以智能楼宇自动化控制系统为基石,构筑绿色建筑节能增效新标杆
ctrlworks
楼宇自控康沃思物联楼宇自控系统厂家ba系统厂商建筑管理系统厂家ibms系统厂家
在全球“双碳”目标加速推进与能源危机日益凸显的背景下,建筑行业作为能源消耗与碳排放的重点领域,正面临从传统建造向绿色智能化转型的迫切需求。数据显示,我国建筑运行阶段能耗占全社会总能耗超30%,碳排放占比达21.9%,而传统建筑管理模式下设备低效运行、能源浪费等问题普遍存在。智能楼宇自动化控制系统(BACS)凭借物联网、大数据、人工智能等技术,通过对建筑设备的精准监控、智能调度与协同管理,成为破解绿
- 探索生成式 AI Agent:12类,40+个AI Agent实例应用场景的宝藏库
和老莫一起学AI
人工智能产品经理职场和发展面试自然语言处理ai大模型
在人工智能的璀璨星空中,生成式AI智能体(GenAIAgents)无疑是最耀眼的星辰之一,正以前所未有的速度改变着我们与技术互动的方式。今天,我将分享GitHub上一个宝藏级的项目——“NirDiamant/GenAI_Agents”,这里汇聚了从基础到高级的各种GenAI智能体技术教程与实现案例,堪称一座智能体开发的知识宝库。1.适合初学者的智能体简单会话智能体概览通过集成语言模型、提示模板和历
- VSCode-Copilot的系统提示词
youngqqcn
AIvscodecopilotide
title:VSCode-Copilot系统提示词date:2025-07-0211:05categories:技术tags:AI人工智能LLM大语言模型提示词Microsoft开源了VSCodeCopilotChat,以下是其系统提示词的摘录。https://github.com/microsoft/vscode-copilot-chat/blob/main/src/extension/prom
- 边缘人工智能与医疗AI融合发展路径:技术融合与应用前景(下)
Allen_Lyb
数智化医院2025人工智能健康医疗数据库矩阵
医疗边缘AI的市场趋势医疗边缘AI市场正经历着显著的增长,根据市场研究公司的数据,2024年的边缘AI市场价值为125亿美元,估计在2025至2034年之间,由于各部门越来越多地采用边缘装置,CAGR为24.8%。保健、制造业、零售业和汽车业的企业拥有综合边缘计算解决方案[36]。这一增长趋势表明,边缘AI技术正在各行各业得到广泛应用,其中医疗保健是一个重要的应用领域。2023年全球边缘人工智能市
- AI 编程对决:Gemini CLI vs Claude Code,谁是最佳 AI 编码工具?
charieli-fh
人工智能大模型
1.引言:AI编码工具的崛起在软件开发的快节奏世界中,人工智能(AI)工具正迅速从辅助角色转变为不可或缺的伙伴。它们不再仅仅是提供代码补全,而是能够理解复杂上下文、执行多步骤任务,甚至自动化整个工作流的智能代理。这种转变正在重塑开发者的日常工作,提高生产力,并加速创新。在众多涌现的AI编码工具中,Google的GeminiCLI和Anthropic的ClaudeCode脱颖而出,各自代表了AI辅助
- 微调 || RAG,项目落地怎么选?LLM应用选型指南,适用场景全解析
认知超载
AI人工智能
基本定义微调:是指利用更小、更具针对性的数据集对经过预先训练的大语言模型进一步训练的过程。在这个过程中,模型基于新数据集修改权重和参数,学习特定于任务的模式,同时保留来自最初预训练模型的知识。RAG:即检索增强生成,是将检索大量外部知识的过程与文本生成结合在一起的一种方法。它会从大型外部数据库中检索与输入问题相关的信息,将这些信息作为上下文提供给大语言模型,辅助其生成回答。微调适用场景1.特定领域
- 百度颠覆了自己,飞算JavaAI造福了中国程序员!
飞算JavaAI开发助手
百度
在当今这个科技日新月异的时代,企业纷纷寻求技术突破,以期在激烈的市场竞争中脱颖而出。百度,作为中国互联网行业的领军企业之一,凭借其强大的科技实力和创新能力,在人工智能等多个领域取得了显著成就,并正在逐步颠覆自身的传统形象。百度自成立之初,就将技术创新视为企业的生命线。从最初的搜索引擎技术,到如今的深度学习、自然语言处理、计算机视觉等前沿领域,百度始终走在技术革新的前沿。其自主研发的飞桨深度学习平台
- Java AI 开发智能体:从入门到实践
培风图南以星河揽胜
javajava人工智能开发语言
在人工智能(AI)技术蓬勃发展的今天,智能体作为AI领域的核心概念之一,正逐渐渗透到各个行业与应用场景。而Java凭借其跨平台性、丰富的类库和强大的生态系统,成为开发智能体的热门选择。本文将深入探讨如何使用Java进行AI开发智能体,从基础概念到实践应用,解答常见问题,为你揭开JavaAI开发智能体的神秘面纱。一、Java在AI开发中的优势1.跨平台性Java的“一次编写,到处运行”特性,使得基于
- ollama v0.9.4 详解:联网功能、模型目录自定义及macOS性能优化全面升级
近年来,随着人工智能技术的快速发展,模型管理与调用变得尤为重要。作为一款备受关注的本地AI模型管理工具,Ollama在最新发布的v0.9.4版本中带来了多项重磅改进和全新功能,提升了用户体验和应用场景的灵活性。本文将深入解析Ollamav0.9.4版本的功能亮点、技术改进以及实用操作指南,帮助广大开发者和AI爱好者全面掌握这款工具的最新动态。一、版本概述Ollamav0.9.4版本于2025年7月
- 用鸿蒙打造真正的跨设备数据库:从零实现分布式存储
网罗开发
HarmonyOS实战源码实战harmonyos数据库分布式
网罗开发(小红书、快手、视频号同名) 大家好,我是展菲,目前在上市企业从事人工智能项目研发管理工作,平时热衷于分享各种编程领域的软硬技能知识以及前沿技术,包括iOS、前端、HarmonyOS、Java、Python等方向。在移动端开发、鸿蒙开发、物联网、嵌入式、云原生、开源等领域有深厚造诣。图书作者:《ESP32-C3物联网工程开发实战》图书作者:《SwiftUI入门,进阶与实战》超级个体:CO
- LangSmith 深度解析:构建企业级LLM应用的全生命周期平台
小赖同学啊
人工智能人工智能
LangSmith深度解析:构建企业级LLM应用的全生命周期平台LangSmith是LangChain生态系统中的核心组件,为LLM应用提供从开发到生产的全链路支持。以下是全面技术解析:一、核心架构设计应用层LangSmithSDK采集层处理引擎存储层分析层控制台监控告警1.分层架构详解层级组件功能技术栈应用层LLM应用业务逻辑执行LangChain,LangGraph采集层Tracer数据收集O
- LangChain4j在Java企业应用中的实战指南-2
在未来等你
大模型应用开发AI技术编程JavaSpring
LangChain4j在Java企业应用中的实战指南文章标签langchain4j,JavaAI,RAG系统,智能应用开发,LangChain4j实战,企业级AI应用,Java微服务,检索增强生成文章简述随着大语言模型(LLM)的广泛应用,企业对智能应用的需求日益增长。LangChain4j作为一款专为Java生态打造的LLM集成框架,正在成为构建RAG(检索增强生成)系统和智能应用的重要工具。本
- java观察者模式
3213213333332132
java设计模式游戏观察者模式
观察者模式——顾名思义,就是一个对象观察另一个对象,当被观察的对象发生变化时,观察者也会跟着变化。
在日常中,我们配java环境变量时,设置一个JAVAHOME变量,这就是被观察者,使用了JAVAHOME变量的对象都是观察者,一旦JAVAHOME的路径改动,其他的也会跟着改动。
这样的例子很多,我想用小时候玩的老鹰捉小鸡游戏来简单的描绘观察者模式。
老鹰会变成观察者,母鸡和小鸡是
- TFS RESTful API 模拟上传测试
ronin47
TFS RESTful API 模拟上传测试。
细节参看这里:https://github.com/alibaba/nginx-tfs/blob/master/TFS_RESTful_API.markdown
模拟POST上传一个图片:
curl --data-binary @/opt/tfs.png http
- PHP常用设计模式单例, 工厂, 观察者, 责任链, 装饰, 策略,适配,桥接模式
dcj3sjt126com
设计模式PHP
// 多态, 在JAVA中是这样用的, 其实在PHP当中可以自然消除, 因为参数是动态的, 你传什么过来都可以, 不限制类型, 直接调用类的方法
abstract class Tiger {
public abstract function climb();
}
class XTiger extends Tiger {
public function climb()
- hibernate
171815164
Hibernate
main,save
Configuration conf =new Configuration().configure();
SessionFactory sf=conf.buildSessionFactory();
Session sess=sf.openSession();
Transaction tx=sess.beginTransaction();
News a=new
- Ant实例分析
g21121
ant
下面是一个Ant构建文件的实例,通过这个实例我们可以很清楚的理顺构建一个项目的顺序及依赖关系,从而编写出更加合理的构建文件。
下面是build.xml的代码:
<?xml version="1
- [简单]工作记录_接口返回405原因
53873039oycg
工作
最近调接口时候一直报错,错误信息是:
responseCode:405
responseMsg:Method Not Allowed
接口请求方式Post.
- 关于java.lang.ClassNotFoundException 和 java.lang.NoClassDefFoundError 的区别
程序员是怎么炼成的
真正完成类的加载工作是通过调用 defineClass来实现的;
而启动类的加载过程是通过调用 loadClass来实现的;
就是类加载器分为加载和定义
protected Class<?> findClass(String name) throws ClassNotFoundExcept
- JDBC学习笔记-JDBC详细的操作流程
aijuans
jdbc
所有的JDBC应用程序都具有下面的基本流程: 1、加载数据库驱动并建立到数据库的连接。 2、执行SQL语句。 3、处理结果。 4、从数据库断开连接释放资源。
下面我们就来仔细看一看每一个步骤:
其实按照上面所说每个阶段都可得单独拿出来写成一个独立的类方法文件。共别的应用来调用。
1、加载数据库驱动并建立到数据库的连接:
Html代码
St
- rome创建rss
antonyup_2006
tomcatcmsxmlstrutsOpera
引用
1.RSS标准
RSS标准比较混乱,主要有以下3个系列
RSS 0.9x / 2.0 : RSS技术诞生于1999年的网景公司(Netscape),其发布了一个0.9版本的规范。2001年,RSS技术标准的发展工作被Userland Software公司的戴夫 温那(Dave Winer)所接手。陆续发布了0.9x的系列版本。当W3C小组发布RSS 1.0后,Dave W
- html表格和表单基础
百合不是茶
html表格表单meta锚点
第一次用html来写东西,感觉压力山大,每次看见别人发的都是比较牛逼的 再看看自己什么都还不会,
html是一种标记语言,其实很简单都是固定的格式
_----------------------------------------表格和表单
表格是html的重要组成部分,表格用在body里面的
主要用法如下;
<table>
&
- ibatis如何传入完整的sql语句
bijian1013
javasqlibatis
ibatis如何传入完整的sql语句?进一步说,String str ="select * from test_table",我想把str传入ibatis中执行,是传递整条sql语句。
解决办法:
<
- 精通Oracle10编程SQL(14)开发动态SQL
bijian1013
oracle数据库plsql
/*
*开发动态SQL
*/
--使用EXECUTE IMMEDIATE处理DDL操作
CREATE OR REPLACE PROCEDURE drop_table(table_name varchar2)
is
sql_statement varchar2(100);
begin
sql_statement:='DROP TABLE '||table_name;
- 【Linux命令】Linux工作中常用命令
bit1129
linux命令
不断的总结工作中常用的Linux命令
1.查看端口被哪个进程占用
通过这个命令可以得到占用8085端口的进程号,然后通过ps -ef|grep 进程号得到进程的详细信息
netstat -anp | grep 8085
察看进程ID对应的进程占用的端口号
netstat -anp | grep 进程ID
&
- 优秀网站和文档收集
白糖_
网站
集成 Flex, Spring, Hibernate 构建应用程序
性能测试工具-JMeter
Hmtl5-IOCN网站
Oracle精简版教程网站
鸟哥的linux私房菜
Jetty中文文档
50个jquery必备代码片段
swfobject.js检测flash版本号工具
- angular.extend
boyitech
AngularJSangular.extendAngularJS API
angular.extend 复制src对象中的属性去dst对象中. 支持多个src对象. 如果你不想改变一个对象,你可以把dst设为空对象{}: var object = angular.extend({}, object1, object2). 注意: angular.extend不支持递归复制. 使用方法: angular.extend(dst, src); 参数:
- java-谷歌面试题-设计方便提取中数的数据结构
bylijinnan
java
网上找了一下这道题的解答,但都是提供思路,没有提供具体实现。其中使用大小堆这个思路看似简单,但实现起来要考虑很多。
以下分别用排序数组和大小堆来实现。
使用大小堆:
import java.util.Arrays;
public class MedianInHeap {
/**
* 题目:设计方便提取中数的数据结构
* 设计一个数据结构,其中包含两个函数,1.插
- ajaxFileUpload 针对 ie jquery 1.7+不能使用问题修复版本
Chen.H
ajaxFileUploadie6ie7ie8ie9
jQuery.extend({
handleError: function( s, xhr, status, e ) {
// If a local callback was specified, fire it
if ( s.error ) {
s.error.call( s.context || s, xhr, status, e );
}
- [机器人制造原则]机器人的电池和存储器必须可以替换
comsci
制造
机器人的身体随时随地可能被外来力量所破坏,但是如果机器人的存储器和电池可以更换,那么这个机器人的思维和记忆力就可以保存下来,即使身体受到伤害,在把存储器取下来安装到一个新的身体上之后,原有的性格和能力都可以继续维持.....
另外,如果一
- Oracle Multitable INSERT 的用法
daizj
oracle
转载Oracle笔记-Multitable INSERT 的用法
http://blog.chinaunix.net/uid-8504518-id-3310531.html
一、Insert基础用法
语法:
Insert Into 表名 (字段1,字段2,字段3...)
Values (值1,
- 专访黑客历史学家George Dyson
datamachine
on
20世纪最具威力的两项发明——核弹和计算机出自同一时代、同一群年青人。可是,与大名鼎鼎的曼哈顿计划(第二次世界大战中美国原子弹研究计划)相 比,计算机的起源显得默默无闻。出身计算机世家的历史学家George Dyson在其新书《图灵大教堂》(Turing’s Cathedral)中讲述了阿兰·图灵、约翰·冯·诺依曼等一帮子天才小子创造计算机及预见计算机未来
- 小学6年级英语单词背诵第一课
dcj3sjt126com
englishword
always 总是
rice 水稻,米饭
before 在...之前
live 生活,居住
usual 通常的
early 早的
begin 开始
month 月份
year 年
last 最后的
east 东方的
high 高的
far 远的
window 窗户
world 世界
than 比...更
- 在线IT教育和在线IT高端教育
dcj3sjt126com
教育
codecademy
http://www.codecademy.com codeschool
https://www.codeschool.com teamtreehouse
http://teamtreehouse.com lynda
http://www.lynda.com/ Coursera
https://www.coursera.
- Struts2 xml校验框架所定义的校验文件
蕃薯耀
Struts2 xml校验Struts2 xml校验框架Struts2校验
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年7月11日 15:54:59 星期六
http://fa
- mac下安装rar和unrar命令
hanqunfeng
mac
1.下载:http://www.rarlab.com/download.htm 选择
RAR 5.21 for Mac OS X 2.解压下载后的文件 tar -zxvf rarosx-5.2.1.tar 3.cd rar sudo install -c -o $USER unrar /bin #输入当前用户登录密码 sudo install -c -o $USER rar
- 三种将list转换为map的方法
jackyrong
list
在本文中,介绍三种将list转换为map的方法:
1) 传统方法
假设有某个类如下
class Movie {
private Integer rank;
private String description;
public Movie(Integer rank, String des
- 年轻程序员需要学习的5大经验
lampcy
工作PHP程序员
在过去的7年半时间里,我带过的软件实习生超过一打,也看到过数以百计的学生和毕业生的档案。我发现很多事情他们都需要学习。或许你会说,我说的不就是某种特定的技术、算法、数学,或者其他特定形式的知识吗?没错,这的确是需要学习的,但却并不是最重要的事情。他们需要学习的最重要的东西是“自我规范”。这些规范就是:尽可能地写出最简洁的代码;如果代码后期会因为改动而变得凌乱不堪就得重构;尽量删除没用的代码,并添加
- 评“女孩遭野蛮引产致终身不育 60万赔偿款1分未得”医腐深入骨髓
nannan408
先来看南方网的一则报道:
再正常不过的结婚、生子,对于29岁的郑畅来说,却是一个永远也无法实现的梦想。从2010年到2015年,从24岁到29岁,一张张新旧不一的诊断书记录了她病情的同时,也清晰地记下了她人生的悲哀。
粗暴手术让人发寒
2010年7月,在酒店做服务员的郑畅发现自己怀孕了,可男朋友却联系不上。在没有和家人商量的情况下,她决定堕胎。
12月5日,
- 使用jQuery为input输入框绑定回车键事件 VS 为a标签绑定click事件
Everyday都不同
jspinput回车键绑定clickenter
假设如题所示的事件为同一个,必须先把该js函数抽离出来,该函数定义了监听的处理:
function search() {
//监听函数略......
}
为input框绑定回车事件,当用户在文本框中输入搜索关键字时,按回车键,即可触发search():
//回车绑定
$(".search").keydown(fun
- EXT学习记录
tntxia
ext
1. 准备
(1) 官网:http://www.sencha.com/
里面有源代码和API文档下载。
EXT的域名已经从www.extjs.com改成了www.sencha.com ,但extjs这个域名会自动转到sencha上。
(2)帮助文档:
想要查看EXT的官方文档的话,可以去这里h
- mybatis3的mapper文件报Referenced file contains errors
xingguangsixian
mybatis
最近使用mybatis.3.1.0时无意中碰到一个问题:
The errors below were detected when validating the file "mybatis-3-mapper.dtd" via the file "account-mapper.xml". In most cases these errors can be d