多线程处理大批量数据操作

 @Autowired
private DataSourceTransactionManager dataSourceTransactionManager;

@Autowired
private TransactionDefinition transactionDefinition;

@Autowired
private StudentService studentService;

/**
 * 对用户而言,27s 任是一个较长的时间,我们尝试用多线程的方式来经行修改操作看能否加快处理速度
 * 预计创建10个线程,每个线程进行5000条数据修改操作
 * 耗时统计
 * 1 线程数:1      耗时:25s
 * 2 线程数:2      耗时:14s
 * 3 线程数:5      耗时:15s
 * 4 线程数:10     耗时:15s
 * 5 线程数:100    耗时:15s
 * 6 线程数:200    耗时:15s
 * 7 线程数:500    耗时:17s
 * 8 线程数:1000    耗时:19s
 * 8 线程数:2000    耗时:23s
 * 8 线程数:5000    耗时:29s
 */
@Test
void updateStudentWithThreads() {
    //查询总数据
    List allStudents = studentMapper.getAll();
    // 线程数量
    final Integer threadCount = 100;

    //每个线程处理的数据量
    final Integer dataPartionLength = (allStudents.size() + threadCount - 1) / threadCount;

    // 创建多线程处理任务
    ExecutorService studentThreadPool = Executors.newFixedThreadPool(threadCount);
    CountDownLatch threadLatchs = new CountDownLatch(threadCount);

    for (int i = 0; i < threadCount; i++) {
        // 每个线程处理的数据
        List threadDatas = allStudents.stream()
                .skip(i * dataPartionLength).limit(dataPartionLength).collect(Collectors.toList());
        studentThreadPool.execute(() -> {
            studentService.updateStudents(threadDatas, threadLatchs);
        });
    }
    try {
        // 倒计时锁设置超时时间 30s
        threadLatchs.await(30, TimeUnit.SECONDS);
    } catch (Throwable e) {
        e.printStackTrace();
    }

    System.out.println("主线程完成");
}

你可能感兴趣的:(spring)