SQL数据库查询group by优化策略

日常开发中,我们经常会使用到group by。亲爱的小伙伴,你是否知道group by的工作原理呢?group by和having有什么区别呢?group by的优化思路是怎样的呢?使用group by有哪些需要注意的问题呢?本文将跟大家一起来学习,攻克group by~

使用group by的简单例子

group by 工作原理

group by + where 和 having的区别

group by 优化思路

group by 使用注意点

一个生产慢SQL如何优化

  1. 使用group by的简单例子
    group by一般用于分组统计,它表达的逻辑就是根据一定的规则,进行分组。我们先从一个简单的例子,一起来复习一下哈。

假设用一张员工表,表结构如下:

CREATE TABLE staff (
id bigint(11) NOT NULL AUTO_INCREMENT COMMENT ‘主键id’,
id_card varchar(20) NOT NULL COMMENT ‘身份证号码’,
name varchar(64) NOT NULL COMMENT ‘姓名’,
age int(4) NOT NULL COMMENT ‘年龄’,
city varchar(64) NOT NULL COMMENT ‘城市’,
PRIMARY KEY (id)
) ENGINE=InnoDB AUTO_INCREMENT=15 DEFAULT CHARSET=utf8 COMMENT=‘员工表’;
表存量的数据如下:

eb097ff0321f196a3a4fa436efa6e87e.png
我们现在有这么一个需求:统计每个城市的员工数量。对应的 SQL 语句就可以这么写:

select city ,count(*) as num from staff group by city;
执行结果如下:

这条SQL语句的逻辑很清楚啦,但是它的底层执行流程是怎样的呢?

  1. group by 原理分析
    2.1 explain 分析
    我们先用explain查看一下执行计划

explain select city ,count(*) as num from staff group by city;
Extra 这个字段的Using temporary表示在执行分组的时候使用了临时表

Extra 这个字段的Using filesort表示使用了排序

group by 怎么就使用到临时表和排序了呢?我们来看下这个SQL的执行流程

2.2 group by 的简单执行流程
explain select city ,count(*) as num from staff group by city;
我们一起来看下这个SQL的执行流程哈

创建内存临时表,表里有两个字段city和num;

全表扫描staff的记录,依次取出city = 'X’的记录。

判断临时表中是否有为 city='X’的行,没有就插入一个记录 (X,1);

如果临时表中有city='X’的行的行,就将x 这一行的num值加 1;

遍历完成后,再根据字段city做排序,得到结果集返回给客户端。

这个流程的执行图如下:

临时表的排序是怎样的呢?

就是把需要排序的字段,放到sort buffer,排完就返回。在这里注意一点哈,排序分全字段排序和rowid排序

如果是全字段排序,需要查询返回的字段,都放入sort buffer,根据排序字段排完,直接返回

如果是rowid排序,只是需要排序的字段放入sort buffer,然后多一次回表操作,再返回。

怎么确定走的是全字段排序还是rowid 排序排序呢?由一个数据库参数控制的,max_length_for_sort_data

  1. where 和 having的区别
    group by + where 的执行流程

group by + having 的执行流程

同时有where、group by 、having的执行顺序

3.1 group by + where 的执行流程
有些小伙伴觉得上一小节的SQL太简单啦,如果加了where条件之后,并且where条件列加了索引呢,执行流程是怎样?

好的,我们给它加个条件,并且加个idx_age的索引,如下:

select city ,count(*) as num from staff where age> 30 group by city;
//加索引
alter table staff add index idx_age (age);
再来expain分析一下:

explain select city ,count(*) as num from staff where age> 30 group by city;
从explain 执行计划结果,可以发现查询条件命中了idx_age的索引,并且使用了临时表和排序

Using index condition:表示索引下推优化,根据索引尽可能的过滤数据,然后再返回给服务器层根据where其他条件进行过滤。这里单个索引为什么会出现索引下推呢?explain出现并不代表一定是使用了索引下推,只是代表可以使用,但是不一定用了。大家如果有想法或者有疑问,可以加我微信讨论哈。

执行流程如下:

创建内存临时表,表里有两个字段city和num;

扫描索引树idx_age,找到大于年龄大于30的主键ID

通过主键ID,回表找到city = ‘X’

判断临时表中是否有为 city='X’的行,没有就插入一个记录 (X,1);

如果临时表中有city='X’的行的行,就将x 这一行的num值加 1;

继续重复2,3步骤,找到所有满足条件的数据,

最后根据字段city做排序,得到结果集返回给客户端。

3.2 group by + having 的执行
如果你要查询每个城市的员工数量,获取到员工数量不低于3的城市,having可以很好解决你的问题,SQL酱紫写:

select city ,count(*) as num from staff group by city having num >= 3;
查询结果如下:

0a1d54920b63942ee5b20566c2c5ad46.pnghaving称为分组过滤条件,它对返回的结果集操作。

3.3 同时有where、group by 、having的执行顺序
如果一个SQL同时含有where、group by、having子句,执行顺序是怎样的呢。

比如这个SQL:

select city ,count(*) as num from staff where age> 19 group by city having num >= 3;
执行where子句查找符合年龄大于19的员工数据

group by子句对员工数据,根据城市分组。

对group by子句形成的城市组,运行聚集函数计算每一组的员工数量值;

最后用having子句选出员工数量大于等于3的城市组。

3.4 where + having 区别总结
having子句用于分组后筛选,where子句用于行条件筛选

having一般都是配合group by 和聚合函数一起出现如(count(),sum(),avg(),max(),min())

where条件子句中不能使用聚集函数,而having子句就可以。

having只能用在group by之后,where执行在group by之前

  1. 使用 group by 注意的问题
    使用group by 主要有这几点需要注意:

group by一定要配合聚合函数一起使用嘛?

group by的字段一定要出现在select中嘛

group by导致的慢SQL问题

4.1 group by一定要配合聚合函数使用嘛?
group by 就是分组统计的意思,一般情况都是配合聚合函数如(count(),sum(),avg(),max(),min())一起使用。

count() 数量

sum() 总和

avg() 平均

max() 最大值

min() 最小值

如果没有配合聚合函数使用可以吗?

我用的是Mysql 5.7 ,是可以的。不会报错,并且返回的是,分组的第一行数据。

比如这个SQL:

select city,id_card,age from staff group by city;
查询结果是

大家对比看下,返回的就是每个分组的第一条数据4

当然,平时大家使用的时候,group by还是配合聚合函数使用的,除非一些特殊场景,比如你想去重,当然去重用distinct也是可以的。

4.2 group by 后面跟的字段一定要出现在select中嘛。
不一定,比如以下SQL:

select max(age) from staff group by city;
执行结果如下:

分组字段city不在select 后面,并不会报错。当然,这个可能跟不同的数据库,不同的版本有关吧。大家使用的时候,可以先验证一下就好。有一句话叫做,纸上得来终觉浅,绝知此事要躬行。

4.3 group by导致的慢SQL问题
到了最重要的一个注意问题啦,group by使用不当,很容易就会产生慢SQL 问题。因为它既用到临时表,又默认用到排序。有时候还可能用到磁盘临时表。

如果执行过程中,会发现内存临时表大小到达了上限(控制这个上限的参数就是tmp_table_size),会把内存临时表转成磁盘临时表。

如果数据量很大,很可能这个查询需要的磁盘临时表,就会占用大量的磁盘空间。

这些都是导致慢SQL的x因素,我们一起来探讨优化方案哈。

  1. group by的一些优化方案
    从哪些方向去优化呢?

方向1:既然它默认会排序,我们不给它排是不是就行啦。

方向2:既然临时表是影响group by性能的X因素,我们是不是可以不用临时表?

我们一起来想下,执行group by语句为什么需要临时表呢?group by的语义逻辑,就是统计不同的值出现的个数。如果这个这些值一开始就是有序的,我们是不是直接往下扫描统计就好了,就不用临时表来记录并统计结果啦?

group by 后面的字段加索引

order by null 不用排序

尽量只使用内存临时表

使用SQL_BIG_RESULT

5.1 group by 后面的字段加索引
如何保证group by后面的字段数值一开始就是有序的呢?当然就是加索引啦。

我们回到一下这个SQL

select city ,count(*) as num from staff where age= 19 group by city;
它的执行计划

0c5b8951d8052682a9c96a70c2472d51.png
如果我们给它加个联合索引idx_age_city(age,city)

alter table staff add index idx_age_city(age,city);
再去看执行计划,发现既不用排序,也不需要临时表啦。

加合适的索引是优化group by最简单有效的优化方式。

5.2 order by null 不用排序
并不是所有场景都适合加索引的,如果碰上不适合创建索引的场景,我们如何优化呢?

如果你的需求并不需要对结果集进行排序,可以使用order by null。

select city ,count(*) as num from staff group by city order by null
执行计划如下,已经没有filesort啦

5.3 尽量只使用内存临时表
如果group by需要统计的数据不多,我们可以尽量只使用内存临时表;因为如果group by 的过程因为内存临时表放不下数据,从而用到磁盘临时表的话,是比较耗时的。因此可以适当调大tmp_table_size参数,来避免用到磁盘临时表。

5.4 使用SQL_BIG_RESULT优化
如果数据量实在太大怎么办呢?总不能无限调大tmp_table_size吧?但也不能眼睁睁看着数据先放到内存临时表,随着数据插入发现到达上限,再转成磁盘临时表吧?这样就有点不智能啦。

因此,如果预估数据量比较大,我们使用SQL_BIG_RESULT 这个提示直接用磁盘临时表。MySQl优化器发现,磁盘临时表是B+树存储,存储效率不如数组来得高。因此会直接用数组来存

示例SQl如下:

select SQL_BIG_RESULT city ,count(*) as num from staff group by city;

执行流程如下:

初始化 sort_buffer,放入city字段;

扫描表staff,依次取出city的值,存入 sort_buffer 中;

扫描完成后,对 sort_buffer的city字段做排序

排序完成后,就得到了一个有序数组。

根据有序数组,统计每个值出现的次数。

  1. 一个生产慢SQL如何优化
    最近遇到个生产慢SQL,跟group by相关的,给大家看下怎么优化哈。

表结构如下:

CREATE TABLE staff (
id bigint(11) NOT NULL AUTO_INCREMENT COMMENT ‘主键id’,
id_card varchar(20) NOT NULL COMMENT ‘身份证号码’,
name varchar(64) NOT NULL COMMENT ‘姓名’,
status varchar(64) NOT NULL COMMENT ‘Y-已激活 I-初始化 D-已删除 R-审核中’,
age int(4) NOT NULL COMMENT ‘年龄’,
city varchar(64) NOT NULL COMMENT ‘城市’,
enterprise_no varchar(64) NOT NULL COMMENT ‘企业号’,
legal_cert_no varchar(64) NOT NULL COMMENT ‘法人号码’,
PRIMARY KEY (id)
) ENGINE=InnoDB AUTO_INCREMENT=15 DEFAULT CHARSET=utf8 COMMENT=‘员工表’;
查询的SQL是这样的:

select * from t1 where status = #{status} group by #{legal_cert_no}
我们先不去探讨这个SQL的=是否合理。如果就是这么个SQL,你会怎么优化呢?有想法的小伙伴可以留言讨论哈,也可以加我微信加群探讨。如果你觉得文章那里写得不对,也可以提出来哈,一起进步,加油呀

你可能感兴趣的:(mysql相关,数据库,sql,group,by查询优化)