- MySQL(1)
哪里不会点哪里.
MySQLmysql数据库
目录数据库的简介MySQL数据库的安装和卸载MySQL数据库概念SQL语言(操作数据库)SQL的分类数据库的操作(CURD)创建数据库(重点)查看数据库(重点)删除数据库(重点)修改数据库表结构操作(CURD)创建表数据库的数据类型(重点)单表的约束(了解)删除和查看表修改表数据的操作(CRUD)(重点)插入数据(insert)MySQL插入中文数据乱码修改数据(update)删除数据(delet
- 浅谈RS232、RS422、RS485、LVDS总线
仰望天空—永强
IO总线
浅谈RS232、RS422、RS485、LVDS总线在了解三种总线前,笔者认为应该先明白总线的分类,这样对总线有更清晰的概念一.总线的概念和分类:1.对总线可以分为片内总线、片间总线、系统总线、外总线片内总线:是微处理器等芯片内部各功能单元的连线(例CPU与片内存储的总线)片间总线:是微处理器等向外引出的总线(例处理器与DDR连接的总线)系统总线:主板上扩展卡与扩展卡之间连接的总线:(例如电脑两个
- 短剧业务产业链涉及的技术系统-TKano模型
百态老人
大数据
短剧业务产业链涉及的技术系统中,TKano模型的应用主要集中在用户需求分析方面。TKano模型是一种用于识别和分类用户需求的方法,通过将用户需求分为基础型需求、期望型需求和兴奋型需求,帮助短剧业务更好地理解用户需求并优化产品。在短剧业务中,TKano模型的应用可以帮助企业识别出哪些是基础型需求(如内容的连贯性和完整性),哪些是期望型需求(如快速观看和推荐功能),以及哪些是兴奋型需求(如附加资源和福
- GEE土地分类——利用landsat 8 和随机森林方法进行土地分类
此星光明
gee土地分类专栏前端gee机器学习土地分类随机森林Landsat土地利用
目录简介代码解释代码函数ee.Classifier.smileRandomForest(numberOfTrees,variablesPerSplit,minLeafPopulation,bagFraction,maxNodes,seed)Arguments:Returns:Classifier结果简介GEE土地分类——利用landsat8和随机森林方法进行土地分类代码解释这段代码是用Google
- [NIPST AI]对抗性机器学习攻击和缓解的分类和术语
Anooyman
人工智能网络安全人工智能大语言模型网络安全安全
原文link:https://nvlpubs.nist.gov/nistpubs/ai/NIST.AI.100-2e2025.pdfIntroduction人工智能(AI)系统在过去几年中持续全球扩展。这些系统正在被众多国家开发并广泛部署于各自的经济体系中,人们在生活的许多领域都获得了更多使用AI系统的机会。本报告区分了两大类AI系统:预测型AI(PredictiveAI,PredAI)和生成型A
- Baumer工业相机堡盟工业相机如何通过YoloV8深度学习模型实现动物分类(C#源码,UI界面版)
格林威
机器视觉工业相机数码相机YOLO深度学习计算机视觉人工智能视觉检测c#
Baumer工业相机堡盟工业相机如何通过YoloV8深度学习模型实现动物分类(C#源码,UI界面版))工业相机使用YoloV8模型实现动物分类工业相机实现YoloV8模型实现动物分类的技术背景在相机SDK中获取图像转换图像的代码分析工业相机图像转换Bitmap图像格式和Mat图像重要核心代码本地文件图像转换Bitmap图像格式和Mat图像重要核心代码Mat图像导入YoloV8模型重要核心代码代码实
- 通俗易懂:什么是决策树?
淦暴尼
算法python决策树算法机器学习
1.引言:决策树就像“选择题”你是否曾经在生活中做过“选择题”?比如:今天要不要带伞?晚饭吃什么?该不该买那件心仪已久的商品?其实,我们的大脑经常会像“决策树”一样,通过一连串问题和判断,逐步缩小选择范围,最终做出决定。**决策树(DecisionTree)**就是这样一种模拟人类决策过程的机器学习模型。它通过“提问-分支-决策”的方式,把复杂问题拆解成一系列简单的判断,广泛应用于分类(如判断邮件
- 用项目说话:我的React博客构建成果与经验复盘
Pan Zonghui
移动端react项目总结react.js前端前端框架
这是一个基于React19+TypeScript+Vite构建的现代化博客系统,采用了最新的前端技术栈和工程化实践。项目不仅实现了完整的博客功能,更在架构设计、性能优化、开发体验等方面体现了企业级应用的标准。成品展示个人博客链接地址:https://pzhdv.cnpc端页面展示首页分类页面关于我文章详情页面移动端技术栈选择与分层设计技术栈选择核心框架与工具React19.1.0:最新版本的Rea
- OpenCV学习(二)-二维、三维识别
香蕉可乐荷包蛋
#OpenCVopencv学习人工智能
OpenCV是一个功能强大的计算机视觉库,可以用于识别和处理二维图像和三维图像。以下是关于二维图像和三维图像识别的基础知识和示例代码。1.二维图像识别二维图像识别通常包括图像分类、对象检测、特征提取等任务。以下是一些常见的操作:1.1图像分类使用预训练模型对图像进行分类,例如使用深度学习模型(如ResNet、MobileNet等)。importcv2#加载预训练的深度学习模型net=cv2.dnn
- 睡岗离岗检测算法 Python
燧机科技SuiJi
人工智能python算法深度学习神经网络
睡岗离岗检测算法的核心在于实时监控和智能分析,睡岗离岗检测算法通过安装在关键区域的监控摄像头,系统能够捕捉到员工的活动画面。当系统检测到人体位置长时间未发生变化时,将启动睡姿分类器。该分类器能够识别多种睡姿,如趴在桌子上睡、坐在凳子上后仰睡等。一旦识别为睡姿,系统将立即触发告警机制。这可以通过向管理人员发送警报信号,或通过语音提醒员工的方式实现。睡岗离岗检测算法在多种场景下均有广泛应用。该算法能够
- 题解 | #使用join查询找出没有分类的电影id以及名称#
愤怒的小青春
java
58同城java后端一面凉经主流的哈希算法有哪几种?帮闺蜜们找靠谱男票hc多多光彩积云是什么企业,查不到有用信息太抽象了!培训班装公司招聘阿里巴巴前端暑期实习——无语八面挂怎么写自我介绍|自我介绍保姆级教学灵犀互娱客户端一面面经(求过啊)24找运维实习,这简历可行吗拓竹科技测试开发面经(25届暑期实习)分享一波攒了整个秋招的NLP算法岗面经腾讯广告暑期实习面试1、JVM垃圾回收机制2、syncho
- 算法竞赛备考冲刺必刷题(C++) | 洛谷 P1024 一元三次方程求解
热爱编程的通信人
c++算法开发语言
本文分享的必刷题目是从蓝桥云课、洛谷、AcWing等知名刷题平台精心挑选而来,并结合各平台提供的算法标签和难度等级进行了系统分类。题目涵盖了从基础到进阶的多种算法和数据结构,旨在为不同阶段的编程学习者提供一条清晰、平稳的学习提升路径。欢迎大家订阅我的专栏:算法题解:C++与Python实现!附上汇总贴:
- 软件测试知识集(杂)-@1
苏丽珍
软件测试功能测试
Title1、按测试阶段分类,测试可分为哪几个阶段?2、选择题:下列哪项测试不适合手工测试?3、填空题:ADB的全称4、restful常用四种请求方法5、选择题(多选):移动app包含哪几种类型?(重点)6、Web自动化和APP自动化的区别?7、自动化测试策略有哪些?(很重要)8、自动化测试有哪些成本?(重点)9、哪些场景不适合自动化测试?10、工资表,要求一条语句查询100天内涨薪的员工名字,涨
- No.99 如何阅读一本书23-如何阅读历史书
蒙娜丽莎2021
难以捉摸的史实历史学家关心的是已经发生的事件,而且绝大部分是发生在很久以前的事件。试想一下,法庭上的陪审团为了判断一个事件是否为真实的,都要费一番脑筋,那么对于上百年以前甚至更久远的事件到底是如何发生的它的困难是可想而知的。历史的理论如果一定要分类,应该把历史---也就是过去的故事归为小说,而非科学。历史更接近小说,而非科学。历史学家一定会编撰一些东西,他会找出一个共通的模式。他会假设他知道历史上
- 机器学习专栏(62):手把手实现工业级ResNet-34及调优全攻略
目录一、ResNet革命性突破解析1.1残差学习核心思想1.2ResNet-34结构详解二、工业级Keras实现详解2.1数据预处理流水线2.2完整模型实现三、模型训练调优策略3.1学习率动态调整3.2混合精度训练四、性能优化技巧4.1分布式训练配置4.2TensorRT推理加速五、实战应用案例5.1医疗影像分类5.2工业质检系统六、模型可视化分析6.1特征热力图6.2参数量分析七、常见问题解决方
- 【1202读书清单】 营销管理
飘渺_d65f
001什么是营销一旦有人开始思考自己如何做能够让对方有预期反应,营销游戏已经开始了。最粗暴简单的方式就是告诉对方,我能带给你某些一直想要的好处和需求。002营销什么一根笔(产品)提供记录便利(服务)主要办公(事件)其书写流畅(体验)是白领(人物)在办公室(地点)自我投资(财产)在公众形象(组织)传递(信息)一直进步(观念)10点组成。003需求的分类需求可以从:刻意回避、毫无兴趣、欠缺火候、热情下
- 零基础学习性能测试第一章:核心性能指标-吞吐量QPS/TPS
试着
性能测试学习性能测试零基础性能指标QPSTPS
目录零基础学习性能测试:第一章-核心性能指标:吞吐量(QPS/TPS)一、吞吐量核心概念解析1.吞吐量定义与分类2.核心区别与关系二、吞吐量关键价值与工作应用1.吞吐量的业务意义2.实际工作场景应用三、吞吐量测试实战指南1.测试工具选择2.JMeter吞吐量测试全流程3.关键配置参数四、吞吐量瓶颈分析与优化1.瓶颈定位四步法2.常见瓶颈及解决方案3.优化案例:电商系统吞吐量提升五、工作应用模板与工
- 【原生JS教程】第3节:运算符与表达式
全栈前端老曹
原生JS教程与实战前端教程javascript开发语言ecmascript前端
第3课:运算符与表达式引言运算符是JavaScript中用于操作数据的基本工具,表达式则是由变量、常量、运算符等构成的可求值代码片段。掌握运算符的分类和使用方式,是编写逻辑判断、数据处理和复杂计算的基础。通过本节课的学习,你将掌握:JavaScript中常见的运算符类型(算术、比较、逻辑、三元等)运算符的优先级与结合性表达式的基本概念与使用场景常见运算符陷阱与最佳实践本节内容概要✅1.算术运算符(
- 【AI大模型应用开发】Prompt提示词工程
bay_Tong桐小白
AI大模型人工智能promptai大模型应用开发LLM聊天机器人
halo~我是bay_Tong桐小白本文内容是桐小白个人对所学知识进行的总结和分享,知识点会不定期进行编辑更新和完善,了解最近更新内容可参看更新日志,欢迎各位大神留言、指点感谢新老朋友给予过的关心,过去经历了很多,身心状态慢慢调整,因此更新文章较慢,给关注我的新老朋友道声抱歉,也再次给对桐小白给予关心的新老朋友表示感谢~Prompt提示词工程(初步)【更新日志】大模型分类prompt基本概念pro
- 零基础学习性能测试第一章:核心性能指标-并发量
试着
性能测试学习性能测试零基础性能指标并发量
目录零基础学习性能测试:第一章-核心性能指标:并发量一、并发量核心概念解析1.并发量定义与分类2.并发量关键特性二、并发量测试的核心价值1.业务意义三角模型2.实际工作场景应用三、并发量测试实战指南1.测试工具配置要点2.并发测试四步流程3.JMeter并发测试实操四、并发瓶颈分析与优化1.并发瓶颈定位矩阵2.常见并发问题解决方案3.电商系统并发优化案例五、工作应用模板与工具1.并发测试报告模板2
- 排序算法—交换排序(冒泡、快速)(动图演示)
每天都要进步1
排序算法排序算法算法
目录十大排序算法分类编辑冒泡排序算法步骤:动图演示:性能分析:代码实现(Java):快速排序(挖坑法)算法步骤:动图演示:性能分析:代码实现(Java):十大排序算法分类本篇分享十大排序算法中的需要进行交换操作的冒泡排序与快速排序,其余算法也有介绍噢(努力赶进度中,后续会添加上)冒泡排序冒泡排序是一种非常直观的排序算法,遍历数组,每次比较两个元素,如果后者比前者小则交换位置,重复的进行直至没有再需
- 14.3 FFT与PEFT终极对决:1%参数实现3倍速训练,显存暴降80%!
少林码僧
掌握先机!从0起步实战AI大模型微调打造核心竞争力人工智能机器学习大数据语言模型chatgptllama
以微调权重比例分类:FFTvsPEFT深度解析在大模型微调领域,参数调整比例直接决定训练效率与模型性能的平衡。本小节将深入解析全参数微调(FullFine-Tuning,FFT)与参数高效微调(Parameter-EfficientFine-Tuning,PEFT)的核心差异,并通过具体技术方案对比和实战代码示例揭示其工程应用场景。一、FFT与PEFT技术对比矩阵
- 【机器学习】探索未来科技的前沿:人工智能、机器学习与大模型
AIGC零基础入门小白
AI大模型大模型教程人工智能机器学习科技AI大模型AIGCAI教程大模型教程
文章目录引言一、人工智能:从概念到现实1.1人工智能的定义1.2人工智能的发展历史1.3人工智能的分类1.4人工智能的应用二、机器学习:人工智能的核心技术2.1机器学习的定义2.2机器学习的分类2.3机器学习的实现原理2.4机器学习的应用2.5机器学习的示例代码2.6解释代码三、大模型:推动AI前沿发展的关键技术3.1大模型的定义3.2大模型的发展历程3.3深度学习与神经网络3.4大模型的优势与挑
- 现代人工智能综合分类:大模型时代的架构、模态与生态系统
司南锤
economics人工智能分类数据挖掘
目录引言:人工智能的第四次浪潮与新分类的必要性第一节:大型模型范式的基础支柱1.1规模化假说:算力、数据与算法的三位一体1.2“涌现能力”之谜:当“更多”变为“不同”1.3自监督学习(SSL)革命第二节:大型模型的技术分类学2.1Transformer:现代人工智能的架构基石2.2架构分化:一种功能性分类2.3提升效率与规模:专家混合模型(MoE)2.4超越Transformer:下一代架构的探索
- 人工智能入门指南:从基础概念到实际应用
前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。https://www.captainbed.cn/north文章目录1.**人工智能的基本概念**1.1什么是人工智能?1.2人工智能的分类2.**人工智能的核心技术**2.1机器学习(MachineLearning)2.1.1机器学习的类型2.1.2机器学习流程2.2深度学习(DeepLearni
- 一元线性回归模型与最小二乘法
liuzx32
监督学习中,如果预测的变量是离散的,我们称其为分类(如决策树,支持向量机等),如果预测的变量是连续的,我们称其为回归。回归分析中,如果只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析。对于二维空间线性是一条直线;对于三维空间线性是一个平面,对于多维空间线
- 数字化转型之需求分解
数字化转型魔法师
经验分享
前言上一章我们讲了什么是需求?从多个维度进行了分析,方便大家理解。这一张我们要讲如何完善需求,那怎么完善需求呢?该从哪些方面处理呢?今天进入分享环节。一、如何完善需求1、需求分类需求有多个维度,上一章给大家讲了有时间维度、功能性维度,其实还有复杂性维度、和重要性维度等。因为要方便大家理解,所以上一章节就只讲了时间和功能性两个方面,复杂性和重要性是抽象的不易于理解。那么知道这些需求分类有什么用呢?如
- 基于探路者算法优化的正则化极限学习机(RELM)的分类问题求解
基于探路者算法优化的正则化极限学习机(RELM)的分类问题求解文章目录基于探路者算法优化的正则化极限学习机(RELM)的分类问题求解1.RELM原理2.分类问题求解3.基于探路者算法优化的RELM4.实验结果5.Matlab代码1.RELM原理极限学习机(ELM)具有训练速度快、泛化性能好的优点。极限学习机的结构是一种典型的单隐层前馈神经网络(SLFN)。极限学习机的结构见图RELM算法:若NNN
- 基于探路者算法优化的核极限学习机(KELM)分类算法
智能算法研学社(Jack旭)
智能优化算法应用机器学习#核极限学习机(KELM)算法分类数据挖掘
基于探路者算法优化的核极限学习机(KELM)分类算法文章目录基于探路者算法优化的核极限学习机(KELM)分类算法1.KELM理论基础2.分类问题3.基于探路者算法优化的KELM4.测试结果5.Matlab代码摘要:本文利用探路者算法对核极限学习机(KELM)进行优化,并用于分类1.KELM理论基础核极限学习机(KernelBasedExtremeLearningMachine,KELM)是基于极限
- 传感器基础:传感器的基本原理_3.传感器的分类与应用
kkchenkx
信号仿真2信号处理
3.传感器的分类与应用在上一节中,我们讨论了传感器的基本原理和工作方式。本节将详细介绍传感器的分类及其在不同领域的应用。传感器可以根据不同的标准进行分类,例如工作原理、输出信号类型、测量对象等。了解传感器的分类有助于我们更好地选择和应用适合特定需求的传感器。3.1传感器的分类3.1.1按工作原理分类3.1.1.1电阻式传感器电阻式传感器通过测量电阻的变化来检测物理量的变化。常见的电阻式传感器包括应
- 集合框架
天子之骄
java数据结构集合框架
集合框架
集合框架可以理解为一个容器,该容器主要指映射(map)、集合(set)、数组(array)和列表(list)等抽象数据结构。
从本质上来说,Java集合框架的主要组成是用来操作对象的接口。不同接口描述不同的数据类型。
简单介绍:
Collection接口是最基本的接口,它定义了List和Set,List又定义了LinkLi
- Table Driven(表驱动)方法实例
bijian1013
javaenumTable Driven表驱动
实例一:
/**
* 驾驶人年龄段
* 保险行业,会对驾驶人的年龄做年龄段的区分判断
* 驾驶人年龄段:01-[18,25);02-[25,30);03-[30-35);04-[35,40);05-[40,45);06-[45,50);07-[50-55);08-[55,+∞)
*/
public class AgePeriodTest {
//if...el
- Jquery 总结
cuishikuan
javajqueryAjaxWebjquery方法
1.$.trim方法用于移除字符串头部和尾部多余的空格。如:$.trim(' Hello ') // Hello2.$.contains方法返回一个布尔值,表示某个DOM元素(第二个参数)是否为另一个DOM元素(第一个参数)的下级元素。如:$.contains(document.documentElement, document.body); 3.$
- 面向对象概念的提出
麦田的设计者
java面向对象面向过程
面向对象中,一切都是由对象展开的,组织代码,封装数据。
在台湾面向对象被翻译为了面向物件编程,这充分说明了,这种编程强调实体。
下面就结合编程语言的发展史,聊一聊面向过程和面向对象。
c语言由贝尔实
- linux网口绑定
被触发
linux
刚在一台IBM Xserver服务器上装了RedHat Linux Enterprise AS 4,为了提高网络的可靠性配置双网卡绑定。
一、环境描述
我的RedHat Linux Enterprise AS 4安装双口的Intel千兆网卡,通过ifconfig -a命令看到eth0和eth1两张网卡。
二、双网卡绑定步骤:
2.1 修改/etc/sysconfig/network
- XML基础语法
肆无忌惮_
xml
一、什么是XML?
XML全称是Extensible Markup Language,可扩展标记语言。很类似HTML。XML的目的是传输数据而非显示数据。XML的标签没有被预定义,你需要自行定义标签。XML被设计为具有自我描述性。是W3C的推荐标准。
二、为什么学习XML?
用来解决程序间数据传输的格式问题
做配置文件
充当小型数据库
三、XML与HTM
- 为网页添加自己喜欢的字体
知了ing
字体 秒表 css
@font-face {
font-family: miaobiao;//定义字体名字
font-style: normal;
font-weight: 400;
src: url('font/DS-DIGI-e.eot');//字体文件
}
使用:
<label style="font-size:18px;font-famil
- redis范围查询应用-查找IP所在城市
矮蛋蛋
redis
原文地址:
http://www.tuicool.com/articles/BrURbqV
需求
根据IP找到对应的城市
原来的解决方案
oracle表(ip_country):
查询IP对应的城市:
1.把a.b.c.d这样格式的IP转为一个数字,例如为把210.21.224.34转为3524648994
2. select city from ip_
- 输入两个整数, 计算百分比
alleni123
java
public static String getPercent(int x, int total){
double result=(x*1.0)/(total*1.0);
System.out.println(result);
DecimalFormat df1=new DecimalFormat("0.0000%");
- 百合——————>怎么学习计算机语言
百合不是茶
java 移动开发
对于一个从没有接触过计算机语言的人来说,一上来就学面向对象,就算是心里上面接受的了,灵魂我觉得也应该是跟不上的,学不好是很正常的现象,计算机语言老师讲的再多,你在课堂上面跟着老师听的再多,我觉得你应该还是学不会的,最主要的原因是你根本没有想过该怎么来学习计算机编程语言,记得大一的时候金山网络公司在湖大招聘我们学校一个才来大学几天的被金山网络录取,一个刚到大学的就能够去和
- linux下tomcat开机自启动
bijian1013
tomcat
方法一:
修改Tomcat/bin/startup.sh 为:
export JAVA_HOME=/home/java1.6.0_27
export CLASSPATH=$CLASSPATH:$JAVA_HOME/lib/tools.jar:$JAVA_HOME/lib/dt.jar:.
export PATH=$JAVA_HOME/bin:$PATH
export CATALINA_H
- spring aop实例
bijian1013
javaspringAOP
1.AdviceMethods.java
package com.bijian.study.spring.aop.schema;
public class AdviceMethods {
public void preGreeting() {
System.out.println("--how are you!--");
}
}
2.beans.x
- [Gson八]GsonBuilder序列化和反序列化选项enableComplexMapKeySerialization
bit1129
serialization
enableComplexMapKeySerialization配置项的含义
Gson在序列化Map时,默认情况下,是调用Key的toString方法得到它的JSON字符串的Key,对于简单类型和字符串类型,这没有问题,但是对于复杂数据对象,如果对象没有覆写toString方法,那么默认的toString方法将得到这个对象的Hash地址。
GsonBuilder用于
- 【Spark九十一】Spark Streaming整合Kafka一些值得关注的问题
bit1129
Stream
包括Spark Streaming在内的实时计算数据可靠性指的是三种级别:
1. At most once,数据最多只能接受一次,有可能接收不到
2. At least once, 数据至少接受一次,有可能重复接收
3. Exactly once 数据保证被处理并且只被处理一次,
具体的多读几遍http://spark.apache.org/docs/lates
- shell脚本批量检测端口是否被占用脚本
ronin47
#!/bin/bash
cat ports |while read line
do#nc -z -w 10 $line
nc -z -w 2 $line 58422>/dev/null2>&1if[ $?-eq 0]then
echo $line:ok
else
echo $line:fail
fi
done
这里的ports 既可以是文件
- java-2.设计包含min函数的栈
bylijinnan
java
具体思路参见:http://zhedahht.blog.163.com/blog/static/25411174200712895228171/
import java.util.ArrayList;
import java.util.List;
public class MinStack {
//maybe we can use origin array rathe
- Netty源码学习-ChannelHandler
bylijinnan
javanetty
一般来说,“有状态”的ChannelHandler不应该是“共享”的,“无状态”的ChannelHandler则可“共享”
例如ObjectEncoder是“共享”的, 但 ObjectDecoder 不是
因为每一次调用decode方法时,可能数据未接收完全(incomplete),
它与上一次decode时接收到的数据“累计”起来才有可能是完整的数据,是“有状态”的
p
- java生成随机数
cngolon
java
方法一:
/**
* 生成随机数
* @author
[email protected]
* @return
*/
public synchronized static String getChargeSequenceNum(String pre){
StringBuffer sequenceNum = new StringBuffer();
Date dateTime = new D
- POI读写海量数据
ctrain
海量数据
import java.io.FileOutputStream;
import java.io.OutputStream;
import org.apache.poi.xssf.streaming.SXSSFRow;
import org.apache.poi.xssf.streaming.SXSSFSheet;
import org.apache.poi.xssf.streaming
- mysql 日期格式化date_format详细使用
daizj
mysqldate_format日期格式转换日期格式化
日期转换函数的详细使用说明
DATE_FORMAT(date,format) Formats the date value according to the format string. The following specifiers may be used in the format string. The&n
- 一个程序员分享8年的开发经验
dcj3sjt126com
程序员
在中国有很多人都认为IT行为是吃青春饭的,如果过了30岁就很难有机会再发展下去!其实现实并不是这样子的,在下从事.NET及JAVA方面的开发的也有8年的时间了,在这里在下想凭借自己的亲身经历,与大家一起探讨一下。
明确入行的目的
很多人干IT这一行都冲着“收入高”这一点的,因为只要学会一点HTML, DIV+CSS,要做一个页面开发人员并不是一件难事,而且做一个页面开发人员更容
- android欢迎界面淡入淡出效果
dcj3sjt126com
android
很多Android应用一开始都会有一个欢迎界面,淡入淡出效果也是用得非常多的,下面来实现一下。
主要代码如下:
package com.myaibang.activity;
import android.app.Activity;import android.content.Intent;import android.os.Bundle;import android.os.CountDown
- linux 复习笔记之常见压缩命令
eksliang
tar解压linux系统常见压缩命令linux压缩命令tar压缩
转载请出自出处:http://eksliang.iteye.com/blog/2109693
linux中常见压缩文件的拓展名
*.gz gzip程序压缩的文件
*.bz2 bzip程序压缩的文件
*.tar tar程序打包的数据,没有经过压缩
*.tar.gz tar程序打包后,并经过gzip程序压缩
*.tar.bz2 tar程序打包后,并经过bzip程序压缩
*.zi
- Android 应用程序发送shell命令
gqdy365
android
项目中需要直接在APP中通过发送shell指令来控制lcd灯,其实按理说应该是方案公司在调好lcd灯驱动之后直接通过service送接口上来给APP,APP调用就可以控制了,这是正规流程,但我们项目的方案商用的mtk方案,方案公司又没人会改,只调好了驱动,让应用程序自己实现灯的控制,这不蛋疼嘛!!!!
发就发吧!
一、关于shell指令:
我们知道,shell指令是Linux里面带的
- java 无损读取文本文件
hw1287789687
读取文件无损读取读取文本文件charset
java 如何无损读取文本文件呢?
以下是有损的
@Deprecated
public static String getFullContent(File file, String charset) {
BufferedReader reader = null;
if (!file.exists()) {
System.out.println("getFull
- Firebase 相关文章索引
justjavac
firebase
Awesome Firebase
最近谷歌收购Firebase的新闻又将Firebase拉入了人们的视野,于是我做了这个 github 项目。
Firebase 是一个数据同步的云服务,不同于 Dropbox 的「文件」,Firebase 同步的是「数据」,服务对象是网站开发者,帮助他们开发具有「实时」(Real-Time)特性的应用。
开发者只需引用一个 API 库文件就可以使用标准 RE
- C++学习重点
lx.asymmetric
C++笔记
1.c++面向对象的三个特性:封装性,继承性以及多态性。
2.标识符的命名规则:由字母和下划线开头,同时由字母、数字或下划线组成;不能与系统关键字重名。
3.c++语言常量包括整型常量、浮点型常量、布尔常量、字符型常量和字符串性常量。
4.运算符按其功能开以分为六类:算术运算符、位运算符、关系运算符、逻辑运算符、赋值运算符和条件运算符。
&n
- java bean和xml相互转换
q821424508
javabeanxmlxml和bean转换java bean和xml转换
这几天在做微信公众号
做的过程中想找个java bean转xml的工具,找了几个用着不知道是配置不好还是怎么回事,都会有一些问题,
然后脑子一热谢了一个javabean和xml的转换的工具里,自己用着还行,虽然有一些约束吧 ,
还是贴出来记录一下
顺便你提一下下,这个转换工具支持属性为集合、数组和非基本属性的对象。
packag
- C 语言初级 位运算
1140566087
位运算c
第十章 位运算 1、位运算对象只能是整形或字符型数据,在VC6.0中int型数据占4个字节 2、位运算符: 运算符 作用 ~ 按位求反 << 左移 >> 右移 & 按位与 ^ 按位异或 | 按位或 他们的优先级从高到低; 3、位运算符的运算功能: a、按位取反: ~01001101 = 101
- 14点睛Spring4.1-脚本编程
wiselyman
spring4
14.1 Scripting脚本编程
脚本语言和java这类静态的语言的主要区别是:脚本语言无需编译,源码直接可运行;
如果我们经常需要修改的某些代码,每一次我们至少要进行编译,打包,重新部署的操作,步骤相当麻烦;
如果我们的应用不允许重启,这在现实的情况中也是很常见的;
在spring中使用脚本编程给上述的应用场景提供了解决方案,即动态加载bean;
spring支持脚本