进制/编码

一 各种进制

二进制:0,1两种
八进制:标志的开头用0表示
十六进制:标志的开头用0x表示

转换方式

  1. 除以进制
  2. 判断商是否为0
    为0表示结束,从下往上
    不为0继续步骤1

位运算

优点
特定情况下,计算方便,速度快,被支持面广

image.png

清零操作

想将一个单元清零,只需要和一个各位都为零的数相与

取一个数中指定位

和一个指定位为1,其他为0的作与运算

取某个数的某些位置(如低4位)

0000或操作

作翻转操作

如和1111作`异或操作

保留原值-交换操作

0异或等于原值;和自己异或等于0

image.png

左移

右移

image.png

JAVA内置进制转换

image.png

算术(逻辑)右移

补码来说

  1. 算术左移和逻辑左移一样都是右边补0
  2. 逻辑右移很简单,只要将二进制数整体右移,左边补0即可
  3. 算术右移符号位要一起移动,并且在左边补上符号位

二 原码、反码、补码

文章转自:https://blog.csdn.net/zl10086111/article/details/80907428

机器数和真值

机器数

个数在计算机中的二进制表示形式, 叫做这个数的机器数。机器数是带符号的,在计算机用一个数的最高位存放符号, 正数为0, 负数为1

真值

因为第一位是符号位,所以机器数的形式值就不等于真正的数值。例如上面的有符号数 10000011,其最高位1代表负,其真正数值是 -3而不是形式值131(10000011转换成十进制等于131)。所以,为区别起见,将带符号位的机器数对应的真正数值称为机器数的真值

原码, 反码, 补码的基础概念和计算方法

于一个数, 计算机要使用一定的编码方式进行存储. 原码, 反码, 补码是机器存储一个具体数字的编码方式

原码

原码就是符号位加上真值的绝对值, 即用第一位表示符号, 其余位表示值. 比如如果是8位二进制:
[+1]原 = 0000 0001
[-1]原 = 1000 0001

8位二进制数的取值范围就是:
[1111 1111 , 0111 1111] 即 [-127 , 127]

反码

反码的表示方法是:

  • 正数的反码是其本身
  • 负数的反码是在其原码的基础上, 符号位不变,其余各个位取反.

[+1] = [00000001]原 = [00000001]反
[-1] = [10000001]原 = [11111110]反

补码

  • 正数的补码就是其本身
  • 负数的补码是在其原码的基础上, 符号位不变, 其余各位取反, 最后+1. (即在反码的基础上+1)

[+1] = [00000001]原 = [00000001]反 = [00000001]补
[-1] = [10000001]原 = [11111110]反 = [11111111]补

为何要使用原码, 反码和补码

对于负数:可见原码, 反码和补码是完全不同的. 既然原码才是被人脑直接识别并用于计算表示方式, 为何还会有反码和补码呢?

首先, 因为人脑可以知道第一位是符号位, 在计算的时候我们会根据符号位, 选择对真值区域加减. (真值的概念在本文最开头). 但是对于计算机, 加减乘数已经是最基础的运算, 要设计的尽量简单. 计算机辨别"符号位"显然会让计算机的基础电路设计变得十分复杂! 于是人们想出了将符号位也参与运算的方法. 我们知道, 根据运算法则减去一个正数等于加上一个负数, 即: 1-1 = 1 + (-1) = 0 , 所以机器可以只有加法没有减法, 这样计算机运算的设计就更简单了.

于是人们开始探索 将符号位参与运算, 并且只保留加法的方法. 首先来看原码:
计算十进制的表达式: 1-1=0
1 - 1 = 1 + (-1) = [00000001]原 + [10000001]原 = [10000010]原 = -2
如果用原码表示, 让符号位也参与计算, 显然对于减法来说, 结果是不正确的.这也就是为何计算机内部不使用原码表示一个数.

为了解决原码做减法的问题, 出现了反码:
计算十进制的表达式: 1-1=0
1 - 1 = 1 + (-1) = [0000 0001]原 + [1000 0001]原= [0000 0001]反 + [1111 1110]反 = [1111 1111]反 = [1000 0000]原 = -0
发现用反码计算减法, 结果的真值部分是正确的. 而唯一的问题其实就出现在"0"这个特殊的数值上. 虽然人们理解上+0和-0是一样的, 但是0带符号是没有任何意义的. 而且会有[0000 0000]原和[1000 0000]原两个编码表示0.

于是补码的出现, 解决了0的符号以及两个编码的问题:
1-1 = 1 + (-1) = [0000 0001]原 + [1000 0001]原 = [0000 0001]补 + [1111 1111]补 = [0000 0000]补=[0000 0000]原
这样0用[0000 0000]表示, 而以前出现问题的-0则不存在了.而且可以用[1000 0000]表示-128:

-1-127的结果应该是-128, 在用补码运算的结果中, [1000 0000]补 就是-128. 但是注意因为实际上是使用以前的-0的补码来表示-128, 所以-128并没有原码和反码表示.(对-128的补码表示[1000 0000]补算出来的原码是[0000 0000]原, 这是不正确的)
使用补码, 不仅仅修复了0的符号以及存在两个编码的问题, 而且还能够多表示一个最低数. 这就是为什么8位二进制, 使用原码或反码表示的范围为[-127, +127], 而使用补码表示的范围为[-128, 127].
因为机器使用补码, 所以对于编程中常用到的32位int类型, 可以表示范围是: [-231, 231-1] 因为第一位表示的是符号位.而使用补码表示时又可以多保存一个最小值

原码, 反码, 补码 再深入

计算机巧妙地把符号位参与运算, 并且将减法变成了加法, 背后蕴含了怎样的数学原理呢?
将钟表想象成是一个1位的12进制数. 如果当前时间是6点, 我希望将时间设置成4点, 需要怎么做呢?我们可以:

  1. 往回拨2个小时: 6 - 2 = 4
  2. 往前拨10个小时: (6 + 10) mod 12 = 4
  3. 往前拨10+12=22个小时: (6+22) mod 12 =4
    2,3方法中的mod是指取模操作, 16 mod 12 =4 即用16除以12后的余数是4.
    所以钟表往回拨(减法)的结果可以用往前拨(加法)替代!

现在的焦点就落在了如何用一个正数, 来替代一个负数. 上面的例子我们能感觉出来一些端倪, 发现一些规律. 但是数学是严谨的. 不能靠感觉.
首先介绍一个数学中相关的概念: 同余

同余的概念

两个整数a,b,若它们除以整数m所得的余数相等,则称a,b对于模m同余
记作 a ≡ b (mod m)
读作 a 与 b 关于模 m 同余。
举例说明:

4 mod 12 = 4
16 mod 12 = 4
28 mod 12 = 4

所以4, 16, 28关于模 12 同余.

负数取模

正数进行mod运算是很简单的. 但是负数呢?
下面是关于mod运算的数学定义:

clip_image001

x/y外面是取下界符合

上面公式的意思是:
x mod y等于 x 减去 y 乘上 x与y的商的下界.
-3 mod 2 举例:

-3 mod 2
= -3 - 2xL -3/2 J
= -3 - 2xL-1.5J
= -3 - 2x(-2)
= -3 + 4 = 1

开始证明

再回到时钟的问题上:
回拨2小时 = 前拨10小时
回拨4小时 = 前拨8小时
回拨5小时= 前拨7小时
注意, 这里发现的规律!
结合上面学到的同余的概念.实际上:
-2与10是同余的.
-4与8是同余的.

-4 mod 12
= -4 - 12xL -4/12 J
= -4 - 12xL-1/3J
= -4 - 12x(-1)
= -4 + 12 = 8

距离成功越来越近了. 要实现用正数替代负数, 只需要运用同余数的两个定理:

  • 反身性:
    a ≡ a (mod m)
    这个定理是很显而易见的.
  • 线性运算定理:
    如果a ≡ b (mod m),c ≡ d (mod m) 那么:
    (1)a ± c ≡ b ± d (mod m)
    (2)a * c ≡ b * d (mod m)

所以:
7 ≡ 7 (mod 12)
(-2) ≡ 10 (mod 12)
7 -2 ≡ 7 + 10 (mod 12)
现在我们为一个负数, 找到了它的正数同余数. 但是并不是7-2 = 7+10, 而是 7 -2 ≡ 7 + 10 (mod 12) , 即计算结果的余数相等.
接下来回到二进制的问题上, 看一下: 2-1=1的问题.
2-1=2+(-1) = [0000 0010]原 + [1000 0001]原= [0000 0010]反 + [1111 1110]反
11111110这个数就是255,而模看成256,则(-1)mod 256=255 mod 256,因为8比特的进制就是256进1,因此模为256
所以说一个数的反码, 实际上是这个数对于一个膜同余数. 而这个膜并不是我们的二进制, 而是所能表示的最大值!

参考

  1. 原码、反码、补码知识详细讲解(此作者是我找到的讲的最细最明白的一个)

你可能感兴趣的:(进制/编码)