System Design Primer: 英文文档 GitHub - donnemartin/system-design-primer: Learn how to design large-scale systems. Prep for the system design interview. Includes Anki flashcards.
中文版: https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md
初衷主要还是为了学习系统设计,但是这个中文版看起来就像机器翻译的一样,所以还是手动做一些简单的笔记,并且在难以理解的地方对照英文版,根据自己的理解在AI的帮助下进行翻译和知识扩展。
资料来源:扩展你的用户数到第一个一千万
数据库(DataBase,DB)是一个长期存储在计算机内的、有组织的、有共享的、统一管理的数据集合。它是一个按数据结构来存储和管理数据的计算机软件系统。数据库的概念包含了数据、数据组织、数据存储、数据管理四个方面。数据库具有以下几个特点:
数据库主要有以下几种类型:
每种数据库类型都有其适用的场景,需要根据具体需求选择合适的数据库。
像 MYSQL 这样的关系型数据库是一系列以表的形式组织的数据项集合。
事务(transaction)是数据库管理系统(DBMS)中的一个重要概念,它表示为一组逻辑上相关的操作序列。这些操作要么全部完成,要么全部不做,是一个不可分割的工作单位。事务用于保证数据的完整性和一致性,在数据库中执行时,可以是对数据进行增加、修改、删除等操作。
ACID 用来描述关系型数据库事务的特性。
关系型数据库扩展包括许多技术:主从复制、主主复制、联合、分片、非规范化和 SQL调优。
资料来源:可扩展性、可用性、稳定性、模式
我们将数据库分为主库和从库,主库同时负责读取和写入操作,并复制写入到一个或多个从库中,从库只负责读操作。树状形式的从库再将写入复制到更多的从库中去。如果主库离线,系统可以以只读模式运行,直到某个从库被提升为主库或有新的主库出现。
主从复制的缺点:
资料来源:可扩展性、可用性、稳定性、模式
两个主库都负责读操作和写操作,写入操作时互相协调。如果其中一个主库挂机,系统可以继续读取和写入。
主主复制的缺点
数据一致性同步问题可能存在的情况
资料来源:扩展你的用户数到第一个一千万
联合(或按功能划分)将数据库按对应功能分割。例如,可以有三个数据库:论坛、用户和产品,而不仅是一个单体数据库,从而减少每个数据库的读取和写入流量,减少复制延迟。较小的数据库意味着更多适合放入内存的数据,进而意味着更高的缓存命中几率。没有只能串行写入的中心化主库,你可以并行写入,提高负载能力。
联合的缺点
资料来源:可扩展性、可用性、稳定性、模式
分片将数据分配在不同的数据库上,使得每个数据库仅管理整个数据集的一个子集。以用户数据库为例,随着用户数量的增加,越来越多的分片会被添加到集群中。
类似联合的优点,分片可以减少读取和写入流量,减少复制并提高缓存命中率。也减少了索引,通常意味着查询更快,性能更好。如果一个分片出问题,其他的仍能运行,可以使用某种形式的冗余来防止数据丢失。类似联合,没有只能串行写入的中心化主库,可以并行写入,提高负载能力。
常见的做法是用户姓氏的首字母或者用户的地理位置来分隔用户表。
分片的缺点
非规范化试图以写入性能为代价来换取读取性能。在多个表中冗余数据副本,以避免高成本的联结操作。一些关系型数据库,比如 PostgreSQL 和 Oracle 支持物化视图,可以处理冗余信息存储和保证冗余副本一致。
当数据使用诸如联合和分片等技术被分割,进一步提高了处理跨数据中心的联结操作复杂度。非规范化可以规避这种复杂的联结操作。
在多数系统中,读取操作的频率远高于写入操作,比例可达到 100:1,甚至 1000:1。需要复杂的数据库联结的读取操作成本非常高,在磁盘操作上消耗了大量时间。
非规范化的缺点:
SQL 调优是一个范围很广的话题,有很多相关的书可以作为参考。
利用基准测试和性能分析来模拟和发现系统瓶颈很重要。
基准测试和性能分析可能会指引你到以下优化方案。
CHAR
类型存储固定长度的字段,不要用 VARCHAR
。
CHAR
在快速、随机访问时效率很高。如果使用 VARCHAR
,如果你想读取下一个字符串,不得不先读取到当前字符串的末尾。TEXT
类型存储大块的文本,例如博客正文。TEXT
还允许布尔搜索。使用 TEXT
字段需要在磁盘上存储一个用于定位文本块的指针。INT
类型存储高达 2^32 或 40 亿的较大数字。DECIMAL
类型存储货币可以避免浮点数表示错误。BLOBS
存储实际对象,而是用来存储存放对象的位置。VARCHAR(255)
是以 8 位数字存储的最大字符数,在某些关系型数据库中,最大限度地利用字节。NOT NULL
约束来提高搜索性能。SELECT
、GROUP BY
、ORDER BY
、JOIN
)的列如果用了索引会更快。NoSQL 是键-值数据库、文档型数据库、列型数据库或图数据库的统称。数据库是非规范化的,表联结大多在应用程序代码中完成。大多数 NoSQL 无法实现真正符合 ACID 的事务,支持最终一致。
BASE 通常被用于描述 NoSQL 数据库的特性。相比 CAP 理论,BASE 强调可用性超过一致性。
举例说明BASE特性:
除了在 SQL 还是 NoSQL 之间做选择,了解哪种类型的 NoSQL 数据库最适合你的用例也是非常有帮助的。我们将在下一节中快速了解下 键-值存储、文档型存储、列型存储和图存储数据库。
抽象模型:哈希表
键-值存储通常可以实现 O(1) 时间读写,用内存或 SSD 存储数据。数据存储可以按字典顺序维护键,从而实现键的高效检索。键-值存储可以用于存储元数据。
键-值存储性能很高,通常用于存储简单数据模型或频繁修改的数据,如存放在内存中的缓存。键-值存储提供的操作有限,如果需要更多操作,复杂度将转嫁到应用程序层面。
键-值存储是如文档存储,在某些情况下,甚至是图存储等更复杂的存储系统的基础。
抽象模型:将文档作为值的键-值存储
文档类型存储以文档(XML、JSON、二进制文件等)为中心,文档存储了指定对象的全部信息。文档存储根据文档自身的内部结构提供 API 或查询语句来实现查询。请注意,许多键-值存储数据库有用值存储元数据的特性,这也模糊了这两种存储类型的界限。
基于底层实现,文档可以根据集合、标签、元数据或者文件夹组织。尽管不同文档可以被组织在一起或者分成一组,但相互之间可能具有完全不同的字段。
MongoDB 和 CouchDB 等一些文档类型存储还提供了类似 SQL 语言的查询语句来实现复杂查询。DynamoDB 同时支持键-值存储和文档类型存储。
文档类型存储具备高度的灵活性,常用于处理偶尔变化的数据。
抽象模型:嵌套的
ColumnFamily
映射>
类型存储的基本数据单元是列(名/值对)。列可以在列族(类似于 SQL 的数据表)中被分组。超级列族再分组普通列族。你可以使用行键独立访问每一列,具有相同行键值的列组成一行。每个值都包含版本的时间戳用于解决版本冲突。
Google 发布了第一个列型存储数据库 Bigtable,它影响了 Hadoop 生态系统中活跃的开源数据库 HBase 和 Facebook 的 Cassandra。像 BigTable,HBase 和 Cassandra 这样的存储系统将键以字母顺序存储,可以高效地读取键列。
列型存储具备高可用性和高可扩展性。通常被用于大数据相关存储。
资料来源:图数据库
抽象模型: 图
在图数据库中,一个节点对应一条记录,一个弧对应两个节点之间的关系。图数据库被优化用于表示外键繁多的复杂关系或多对多关系。
图数据库为存储复杂关系的数据模型,如社交网络,提供了很高的性能。它们相对较新,尚未广泛应用,查找开发工具或者资源相对较难。许多图只能通过 REST API 访问。
选取 SQL 的原因:
选取 NoSQL 的原因:
适合 NoSQL 的示例数据:
额外参考: