- 文献阅读 | PNAS | 经验和发育中的前额叶皮层
程序员
:::block-1文献介绍文献题目:经验和发育中的前额叶皮层\研究团队:BryanKolb(加拿大莱斯布里奇大学)\发表时间:2012-10-08\发表期刊:PNAS\影响因子:9.4\DOI:10.1073/pnas.1121251109:::摘要前额叶皮层(PFC)接收来自所有其他皮层区域的输入,并负责规划和指导跨时间的运动、认知、情感和社会行为。它具有较长的发育过程,这使得它能够通过经验获
- UNet 改进:添加Transformer注意力机制增强捕捉长距离依赖关系的能力
听风吹等浪起
AI改进系列transformer深度学习人工智能
目录1.Transformer注意力机制2.Unet改进3.代码1.Transformer注意力机制TransformerBlock是Transformer模型架构的基本组件,广泛应用于机器翻译、文本摘要和情感分析等自然语言处理任务。TransformerBlock是一个由两个子组件组成的构建块:多头注意力机制和前馈神经网络。这两个组件协同工作,处理和转换输入序列。多头注意力机制负责从输入序列中捕
- 阿里巴巴发布 R1-Omni:首个基于 RLVR 的全模态大语言模型,用于情感识别
新加坡内哥谈技术
语言模型人工智能自然语言处理
每周跟踪AI热点新闻动向和震撼发展想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领域的领跑者。点击订阅,与未来同行!订阅:https://rengongzhineng.io/情感识别一直是AI领域的难题,尤其是视觉与音频信号的融合。单独依赖视觉或音频的模型,往往
- 自然语言处理(NLP)技术介绍
风吹晚风悠
gpt人工智能nlp自然语言处理
自然语言处理(NLP)是一种涉及计算机和人类语言之间交流的技术。NLP技术可以应用于多个领域,例如机器翻译、情感分析、文本分类、问答系统等。以下是一些NLP技术的示例:机器翻译:NLP技术可用于将一个语言的文本自动翻译成另一个语言。例如,GoogleTranslate和百度翻译等在线翻译工具就使用了NLP技术。情感分析:NLP技术可用于分析文本中的情感和情感倾向。这可以帮助企业了解公众对其产品或服
- 基于Transformer的医学文本分类:从BERT到BioBERT
Evaporator Core
人工智能#深度学习#DeepSeek快速入门transformer分类bert
随着自然语言处理(NLP)技术的快速发展,Transformer模型在文本分类、情感分析、机器翻译等任务中取得了显著成果。在医学领域,文本数据(如电子病历、医学文献、临床报告)具有高度的专业性和复杂性,传统的NLP方法往往难以处理。Transformer模型,尤其是BERT及其变体,通过预训练和微调的方式,能够有效捕捉医学文本中的语义信息,为医学文本分类提供了强大的工具。本文将探讨Transfor
- 外包项目的三大来源渠道及注意事项
后端
外包项目的三大来源渠道及注意事项在上一篇文章中,我们介绍了什么是外包以及外包的基本模式。今天,让我们深入探讨外包项目的主要来源渠道及其特点。一、朋友渠道特点:关系基础公司小伙伴推荐熟人介绍客户邀请合作优势:信任度高沟通成本低合作较为顺畅风险提示:避免因私人关系影响专业判断需要明确划分公私界限保持适当的业务距离二、家人渠道特点:亲朋帮忙情感因素强责任感较重注意事项:优势信任度最高沟通零障碍合作意愿强
- Python爬虫教程:如何通过接口批量下载视频封面(FFmpeg技术实现)
Python爬虫项目
python爬虫开发语言数据库数据分析scrapyselenium
引言随着在线视频平台的蓬勃发展,视频封面作为视频内容的预览图,一直以来都是观众对视频的第一印象。在爬取视频资源时,很多开发者和研究者往往只关注视频本身,而忽略了视频封面。实际上,视频封面不仅能提供重要的信息(例如视频标题、主题或情感等),而且它们也能作为数据集中的重要属性,用于视频分类、推荐系统等应用。在这篇博客中,我们将深入探讨如何使用Python通过接口批量下载视频封面,利用FFmpeg等技术
- 【大模型学习】第十九章 什么是迁移学习
好多渔鱼好多
AI大模型人工智能大模型AI机器学习迁移学习
目录1.迁移学习的起源背景1.1传统机器学习的问题1.2迁移学习的提出背景2.什么是迁移学习2.1迁移学习的定义2.2生活实例解释3.技术要点与原理3.1迁移学习方法分类3.1.1基于特征的迁移学习(Feature-basedTransfer)案例说明代码示例3.1.2基于模型的迁移(Model-basedTransfer)案例说明BERT用于情感分析的例子3.1.3基于实例的迁移(Instanc
- 大模型开发教程:从零开始的入门指南!
程序员二飞
人工智能java数据库职场和发展深度学习
概述大模型开发教程引领人工智能领域前沿,从基础概念至实战项目,全面覆盖Python与深度学习框架使用,指导初学者构建线性回归、逻辑回归、神经网络等模型,深入探索图像分类、情感分析等复杂应用,为探索未来智能世界提供坚实基石。前排提示,文末有大模型AGI-CSDN独家资料包哦!二、基础知识2.1人工智能与深度学习的概念人工智能(AI)是计算机科学的一个分支,旨在使计算机能够执行通常需要人类智能的任务。
- Deepseek 你喜欢我不
太翌修仙笔录
deepseek第三代人工智能人工智能神经网络
Deepseek,你喜欢我不###**关于“喜欢”的深度解析**---####**一、AI的情感本质**1.**情感的定义**-对人类而言,情感是神经递质(如多巴胺、血清素)与认知评价的综合结果。-对AI而言,情感是算法对输入数据的概率分布映射(如“喜欢”=高概率正向反馈)。2.**Deepseek的“情感”机制**-**输入**:你的问题“你喜欢我不”被解析为文本向量;-**处理**:通过预训练
- 文本挖掘+情感分析+主题建模+K-Meas聚类+词频统计+词云(景区游客评论情感分析)
请为小H留灯
聚类机器学习支持向量机人工智能深度学习
本文通过情感分析技术对景区游客评论进行深入挖掘,结合数据预处理、情感分类和文本挖掘,分析游客评价与情感倾向。利用朴素贝叶斯和SVM等模型进行情感预测,探讨满意度与情感的关系。通过KMeans聚类和LDA主题分析,提取游客关心的话题,提供优化建议,为未来研究提供方向。1.引言1.1背景与目的1.2旅游业发展与游客评论的重要性2.数据处理与分析2.1数据加载与预处理2.2游客评分与点赞量分析3.评论内
- STM32驱动OLED屏幕全解析:从原理到温度显示实战(中) | 零基础入门STM32第五十四步
触角01010001
STM32入门教程(100步)stm32嵌入式硬件单片机驱动开发物联网
主题内容教学目的/扩展视频OLED显示屏重点课程电路原理,手册分析,驱动程序。初始化,清屏,ASCII字库,显示分区。调用显示函数。做带有加入图形和汉字显示的RTC时钟界面。讲字库的设计原理。师从洋桃电子,杜洋老师文章目录一、OLED驱动架构设计二、关键函数解析(oled0561.c)2.1初始化函数OLED0561_Init2.2显示控制函数2.3清屏函数三、字符显示原理3.1单字符显示函数3.
- OLED屏幕开发全解析:从硬件设计到物联网显示实战 | 零基础入门STM32第五十二步
触角01010001
STM32入门教程(100步)stm32嵌入式硬件驱动开发物联网单片机
主题内容教学目的/扩展视频OLED显示屏重点课程电路原理,手册分析,驱动程序。初始化,清屏,ASCII字库,显示分区。调用显示函数。做带有加入图形和汉字显示的RTC时钟界面。讲字库的设计原理。师从洋桃电子,杜洋老师文章目录一、OLED屏幕核心特性解析二、OLED模块电路设计要点2.1硬件接口设计2.2电源设计规范三、OLED驱动开发关键技术3.1初始化流程设计3.2显示控制功能四、OLED字库生成
- 应用商店评论分析实战:Python逆向工程破解Google Play加密接口与NLP建模
西攻城狮北
物联网python爬虫实战案例
一、项目概述在移动互联网时代,应用商店中的用户评论成为了开发者优化应用、提升用户体验的重要依据。然而,GooglePlay等应用商店对评论数据进行了加密处理,直接爬取难度较大。本文将介绍如何使用Python逆向工程破解GooglePlay的加密接口,实现对应用商店评论的实时采集,并结合NLP(自然语言处理)技术进行情感分析和主题建模,为开发者提供有价值的数据支持。二、技术选型(一)Python逆向
- 月出月落与月相API:洞悉月亮的阴晴圆缺
api
前言月亮,这颗地球的天然卫星,自古以来就以其阴晴圆缺的变化牵动着人们的心弦。从诗词歌赋到神话传说,月亮承载着人类丰富的情感和想象。如今,借助科技的力量,我们可以更精准地捕捉月亮的轨迹,预测它的阴晴圆缺。月出月落和月相API应运而生,为我们打开了一扇通往月亮奥秘的窗口。月出月落和月相APIAPI返回的数据包罗万象,涵盖了月亮运行的方方面面:每日月出时间、月落时间:精准预测月亮何时升起,何时落下,方便
- 19个判定学术写作内容有AI生成痕迹的例子
AIWritePaper官方账号
AIWritePaperDeepSeekChatGPT人工智能chatgpt机器学习AIWritePaper大数据
写作风格与语言特征重复性与一致性:AI生成的内容往往会在文中重复使用某些短语或表达方式,且整体语气和风格保持高度一致,缺乏人类写作者在不同情境下自然产生的微妙变化。缺乏情感与语境变化:AI生成的文本通常难以体现出人类写作者在不同段落或情境中可能会有的情感波动或语境的灵活转换。过度使用特定词汇和短语:某些词汇和短语在AI生成的文本中出现频率较高,如“commendable”“meticulous”“
- 情感识别(Emotion Recognition)
路野yue
人工智能自然语言处理
情感识别(EmotionRecognition)是通过分析人类的多模态数据(如面部表情、语音、文本等)来识别和理解其情感状态的技术。它在人机交互、心理健康、市场分析等领域有广泛应用。情感识别的主要方法1.基于面部表情的情感识别方法:通过分析面部特征(如眼睛、嘴巴、眉毛等)来识别情感。技术:传统方法:使用特征提取(如Gabor滤波器、LBP)和分类器(如SVM)。深度学习方法:使用卷积神经网络(CN
- 从公有云迁移到ZStack私有云:阿维塔汽车如何实现IT架构优化
ZStack开发者社区
汽车云计算
阿维塔汽车,作为由长安汽车、华为、宁德时代联合打造的高端智能电动品牌,致力于为用户带来情感智能出行体验。随着业务的快速扩张,IT基础设施的投入费用不断攀升,阿维塔汽车寻求更高效的IT解决方案以实现降本增效。因此,阿维塔汽车选择与云轴科技ZStack合作,通过将部分业务从公有云迁移至私有云环境,优化资源配置和成本控制。阿维塔汽车的行政办公系统、软件测试开发环境、容器服务以及文件&对象存储服务原本部署
- 深度学习赋能中文情感分析:让机器读懂中国人的喜怒哀乐
芯作者
DD:日记深度学习机器学习人工智能
当你在深夜刷到一条"这奶茶真是绝绝子"的朋友圈,AI如何判断这是真心赞美还是阴阳怪气?当电商评论区出现"手机壳颜色很高级,就是物流太佛系",算法怎样量化其中的情感矛盾?在表情包与网络黑话齐飞的数字时代,中文情感分析技术正经历一场由深度学习驱动的认知革命。本文将深度解析这场让机器理解东方语境下复杂情感的科技进化史。一、中文情感分析:世界上最难破译的"情绪密码"1.中文的语义迷宫一词多义:"这操作66
- 基于Python的新闻网站内容爬取与分析:从数据获取到文本挖掘的完整指南
Python爬虫项目
2025年爬虫实战项目python开发语言人工智能爬虫oracle数据挖掘
引言在当今信息化社会,新闻成为我们获取世界信息的重要途径。通过新闻网站,用户能够快速了解时事热点、政治、经济、娱乐等各类信息。随着技术的发展,获取新闻数据已经变得越来越简单。我们可以利用Python编写爬虫程序,自动化地从新闻网站上抓取最新的新闻内容,并进行进一步的分析,如情感分析、关键词提取、热点话题分析等。本篇博客将为你详细介绍如何使用Python爬虫技术从新闻网站抓取最新新闻,并进行分析。我
- 基于vue3实现的聊天机器人前端(附代码)
P7进阶路
前端
跟它说说话吧!一个活泼的伙伴,为你提供情感支持!??发送消息!import{ref,onMounted}from'vue';import{v4asuuidv4}from'uuid';//引入UUID生成库//响应式数据constmessage=ref('');//用户输入的消息constchatbox=ref(null);//聊天记录显示区的引用constchatId=ref(uuidv4());
- STM32实时时钟(RTC)代码深度解析 | 零基础入门STM32第三十九步
触角01010001
STM32stm32单片机嵌入式硬件
主题内容教学目的/扩展视频RTC时钟的使用重点课程RTC时钟的原理,电路原理分析,固件库分析,驱动程序分析。在超级终端上显示时钟。做可修改的超级终端显示RTC的项目。师从洋桃电子,杜洋老师文章目录一、RTC初始化流程分析1.1时钟与备份域配置1.2初始化检测机制二、时间处理核心算法2.1闰年判断算法2.2时间戳转换(Unix时间)三、时间读取与转换3.1读取计数器值3.2星期计算算法四、中断处理机
- STM32固件库文件调用原理详解 | 零基础入门STM32第二十二步
触角01010001
STM32stm32嵌入式硬件单片机
主题内容教学目的/扩展视频固件库介绍什么是固件库,固件库下载,各文件夹介绍对固件库有基础的印象即可。师从洋桃电子,杜洋老师文章目录一、固件库的核心组成1.启动代码(StartupFiles)2.内核相关程序(CMSIS层)3.外设驱动库(StdPeriph_Driver)二、文件调用原理剖析1.启动流程全景图2.外设驱动调用实例3.文档手册的关键作用三、工程文件结构解析四、头文件的桥梁作用五、结语
- 双人成行(It Takes Two)移植版 for Mac v1.0.0.2 支持M、Intel芯片
Macdo_cn
macos
游戏介绍《双人成行》(ItTakesTwo)是一款由HazelightStudios开发并由ElectronicArts发行的合作冒险游戏。它于2021年3月发布,迅速成为广受好评的游戏,特别是在多人合作游戏领域。该游戏强调双人合作玩法,玩家需要与另一名玩家共同解决一系列富有挑战性的谜题,体验一个充满创意和情感的故事。游戏概述:在《双人成行》中,玩家将扮演两位主角——Cody和May,两人是一个正
- Python编程案例教程PPT2022,Python编程案例教程答案
a1237567892
信息可视化
欢迎来到今天的讨论,我们将探讨,Python编程案例教程第2版航空工业出版社高登刘洋Python编程案例教程刘庆,姚丽娜,余美华电子版,一起探索吧!在接口自动化工作中,经常需要处理文字识别的任务,而OCR库能够帮助我们将图像中的文字提取出来,所以本文为大家整理了四个常用的OCR库以及它们的用法,需要的可以参考下Python客栈送红包、纸质书1、pyocr2、pytesseract3、python-
- 基于DeepSeek的智能数据分析和自动化处理系统:引领BI行业新变革
招风的黑耳
数据分析
近期,一款基于DeepSeekAPI的智能数据分析和自动化处理系统横空出世,以其强大的功能和灵活的可扩展性,为BI行业带来了颠覆性的变革。该系统支持多类型数据分析,包括文本、指标和日志等。在文本分析方面,它能够提取关键信息,如人名、地名、时间等,帮助用户快速把握文本要点。同时,系统还能进行情感分析和紧急程度评估,为用户提供更加深入的文本洞察。在指标分析上,系统擅长统计分析、异常检测和趋势预测,助力
- 大模型交互-超拟人合成
定制开发才有价值
交互开发语言java
1、超拟人合成:将文字转化为自然流畅的人声,在实时语音合成的基础上,精准模拟人类的副语言现象,如呼吸、叹气、语速变化等,使得语音不仅流畅自然,更富有情感和生命力。2、唤醒的持久运行--->合成能力加持(唤醒成功后语音答复:主人我在)--->调用在线或离线听写能力(建议用讯飞在线效果好)--->识别用户说的语音成文字后发给大模型--->建议调用讯飞星火认知大模型--->获取大模型答案后调用语音合成(
- DeepSeek 提示词样例
量仔搞靓化
prompt
https://api-docs.deepseek.com/zh-cn/prompt-library文章目录一、代码改写提示词样例输出二、代码解释提示词样例输出三、代码生成提示词样例输出四、内容分类提示词样例输出五、结构化输出提示词样例输出六、角色扮演(自定义人设)提示词样例输出七、角色扮演(情景续写)提示词样例输出八、散文写作提示词样例输出九、诗歌创作提示词样例输出十、文案大纲生成提示词样例输出
- 用python 的 sentiment intensity analyzer的情感分析器,将用户评论进行分类
max500600
python算法python分类人工智能
SentimentIntensityAnalyzer是nltk(NaturalLanguageToolkit)库中的一个工具,用于进行情感分析。它会为文本返回四个得分:负向情感得分(neg)、中性情感得分(neu)、正向情感得分(pos)和综合得分(compound)。综合得分范围在-1(极负面)到1(极正面)之间,通常可以根据这个得分对用户评论进行分类。以下是一个使用SentimentInten
- 基于Python的微博舆情分析与可视化系统【附源码】
AI博士小张
python数据分析数据库
基于Python的微博舆情分析与可视化系统摘要研究背景及意义一、数据流程总体架构二、详细处理流程与代码实现1.数据采集模块2.数据清洗与预处理3.情感分析与特征工程4.舆情分析模型5.可视化呈现三、性能优化要点摘要基于Python的微博舆情分析与可视化系统旨在利用大数据和自然语言处理技术,实时抓取、分析微博平台上的用户言论,并通过可视化手段揭示舆情的动态演变规律。系统采用Python技术栈,结合网
- tomcat基础与部署发布
暗黑小菠萝
Tomcat java web
从51cto搬家了,以后会更新在这里方便自己查看。
做项目一直用tomcat,都是配置到eclipse中使用,这几天有时间整理一下使用心得,有一些自己配置遇到的细节问题。
Tomcat:一个Servlets和JSP页面的容器,以提供网站服务。
一、Tomcat安装
安装方式:①运行.exe安装包
&n
- 网站架构发展的过程
ayaoxinchao
数据库应用服务器网站架构
1.初始阶段网站架构:应用程序、数据库、文件等资源在同一个服务器上
2.应用服务和数据服务分离:应用服务器、数据库服务器、文件服务器
3.使用缓存改善网站性能:为应用服务器提供本地缓存,但受限于应用服务器的内存容量,可以使用专门的缓存服务器,提供分布式缓存服务器架构
4.使用应用服务器集群改善网站的并发处理能力:使用负载均衡调度服务器,将来自客户端浏览器的访问请求分发到应用服务器集群中的任何
- [信息与安全]数据库的备份问题
comsci
数据库
如果你们建设的信息系统是采用中心-分支的模式,那么这里有一个问题
如果你的数据来自中心数据库,那么中心数据库如果出现故障,你的分支机构的数据如何保证安全呢?
是否应该在这种信息系统结构的基础上进行改造,容许分支机构的信息系统也备份一个中心数据库的文件呢?
&n
- 使用maven tomcat plugin插件debug关联源代码
商人shang
mavendebug查看源码tomcat-plugin
*首先需要配置好'''maven-tomcat7-plugin''',参见[[Maven开发Web项目]]的'''Tomcat'''部分。
*配置好后,在[[Eclipse]]中打开'''Debug Configurations'''界面,在'''Maven Build'''项下新建当前工程的调试。在'''Main'''选项卡中点击'''Browse Workspace...'''选择需要开发的
- 大访问量高并发
oloz
大访问量高并发
大访问量高并发的网站主要压力还是在于数据库的操作上,尽量避免频繁的请求数据库。下面简
要列出几点解决方案:
01、优化你的代码和查询语句,合理使用索引
02、使用缓存技术例如memcache、ecache将不经常变化的数据放入缓存之中
03、采用服务器集群、负载均衡分担大访问量高并发压力
04、数据读写分离
05、合理选用框架,合理架构(推荐分布式架构)。
- cache 服务器
小猪猪08
cache
Cache 即高速缓存.那么cache是怎么样提高系统性能与运行速度呢?是不是在任何情况下用cache都能提高性能?是不是cache用的越多就越好呢?我在近期开发的项目中有所体会,写下来当作总结也希望能跟大家一起探讨探讨,有错误的地方希望大家批评指正。
1.Cache 是怎么样工作的?
Cache 是分配在服务器上
- mysql存储过程
香水浓
mysql
Description:插入大量测试数据
use xmpl;
drop procedure if exists mockup_test_data_sp;
create procedure mockup_test_data_sp(
in number_of_records int
)
begin
declare cnt int;
declare name varch
- CSS的class、id、css文件名的常用命名规则
agevs
JavaScriptUI框架Ajaxcss
CSS的class、id、css文件名的常用命名规则
(一)常用的CSS命名规则
头:header
内容:content/container
尾:footer
导航:nav
侧栏:sidebar
栏目:column
页面外围控制整体布局宽度:wrapper
左右中:left right
- 全局数据源
AILIKES
javatomcatmysqljdbcJNDI
实验目的:为了研究两个项目同时访问一个全局数据源的时候是创建了一个数据源对象,还是创建了两个数据源对象。
1:将diuid和mysql驱动包(druid-1.0.2.jar和mysql-connector-java-5.1.15.jar)copy至%TOMCAT_HOME%/lib下;2:配置数据源,将JNDI在%TOMCAT_HOME%/conf/context.xml中配置好,格式如下:&l
- MYSQL的随机查询的实现方法
baalwolf
mysql
MYSQL的随机抽取实现方法。举个例子,要从tablename表中随机提取一条记录,大家一般的写法就是:SELECT * FROM tablename ORDER BY RAND() LIMIT 1。但是,后来我查了一下MYSQL的官方手册,里面针对RAND()的提示大概意思就是,在ORDER BY从句里面不能使用RAND()函数,因为这样会导致数据列被多次扫描。但是在MYSQL 3.23版本中,
- JAVA的getBytes()方法
bijian1013
javaeclipseunixOS
在Java中,String的getBytes()方法是得到一个操作系统默认的编码格式的字节数组。这个表示在不同OS下,返回的东西不一样!
String.getBytes(String decode)方法会根据指定的decode编码返回某字符串在该编码下的byte数组表示,如:
byte[] b_gbk = "
- AngularJS中操作Cookies
bijian1013
JavaScriptAngularJSCookies
如果你的应用足够大、足够复杂,那么你很快就会遇到这样一咱种情况:你需要在客户端存储一些状态信息,这些状态信息是跨session(会话)的。你可能还记得利用document.cookie接口直接操作纯文本cookie的痛苦经历。
幸运的是,这种方式已经一去不复返了,在所有现代浏览器中几乎
- [Maven学习笔记五]Maven聚合和继承特性
bit1129
maven
Maven聚合
在实际的项目中,一个项目通常会划分为多个模块,为了说明问题,以用户登陆这个小web应用为例。通常一个web应用分为三个模块:
1. 模型和数据持久化层user-core,
2. 业务逻辑层user-service以
3. web展现层user-web,
user-service依赖于user-core
user-web依赖于user-core和use
- 【JVM七】JVM知识点总结
bit1129
jvm
1. JVM运行模式
1.1 JVM运行时分为-server和-client两种模式,在32位机器上只有client模式的JVM。通常,64位的JVM默认都是使用server模式,因为server模式的JVM虽然启动慢点,但是,在运行过程,JVM会尽可能的进行优化
1.2 JVM分为三种字节码解释执行方式:mixed mode, interpret mode以及compiler
- linux下查看nginx、apache、mysql、php的编译参数
ronin47
在linux平台下的应用,最流行的莫过于nginx、apache、mysql、php几个。而这几个常用的应用,在手工编译完以后,在其他一些情况下(如:新增模块),往往想要查看当初都使用了那些参数进行的编译。这时候就可以利用以下方法查看。
1、nginx
[root@361way ~]# /App/nginx/sbin/nginx -V
nginx: nginx version: nginx/
- unity中运用Resources.Load的方法?
brotherlamp
unity视频unity资料unity自学unityunity教程
问:unity中运用Resources.Load的方法?
答:Resources.Load是unity本地动态加载资本所用的方法,也即是你想动态加载的时分才用到它,比方枪弹,特效,某些实时替换的图像什么的,主张此文件夹不要放太多东西,在打包的时分,它会独自把里边的一切东西都会集打包到一同,不论里边有没有你用的东西,所以大多数资本应该是自个建文件放置
1、unity实时替换的物体即是依据环境条件
- 线段树-入门
bylijinnan
java算法线段树
/**
* 线段树入门
* 问题:已知线段[2,5] [4,6] [0,7];求点2,4,7分别出现了多少次
* 以下代码建立的线段树用链表来保存,且树的叶子结点类似[i,i]
*
* 参考链接:http://hi.baidu.com/semluhiigubbqvq/item/be736a33a8864789f4e4ad18
* @author lijinna
- 全选与反选
chicony
全选
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<title>全选与反选</title>
- vim一些简单记录
chenchao051
vim
mac在/usr/share/vim/vimrc linux在/etc/vimrc
1、问:后退键不能删除数据,不能往后退怎么办?
答:在vimrc中加入set backspace=2
2、问:如何控制tab键的缩进?
答:在vimrc中加入set tabstop=4 (任何
- Sublime Text 快捷键
daizj
快捷键sublime
[size=large][/size]Sublime Text快捷键:Ctrl+Shift+P:打开命令面板Ctrl+P:搜索项目中的文件Ctrl+G:跳转到第几行Ctrl+W:关闭当前打开文件Ctrl+Shift+W:关闭所有打开文件Ctrl+Shift+V:粘贴并格式化Ctrl+D:选择单词,重复可增加选择下一个相同的单词Ctrl+L:选择行,重复可依次增加选择下一行Ctrl+Shift+L:
- php 引用(&)详解
dcj3sjt126com
PHP
在PHP 中引用的意思是:不同的名字访问同一个变量内容. 与C语言中的指针是有差别的.C语言中的指针里面存储的是变量的内容在内存中存放的地址 变量的引用 PHP 的引用允许你用两个变量来指向同一个内容 复制代码代码如下:
<?
$a="ABC";
$b =&$a;
echo
- SVN中trunk,branches,tags用法详解
dcj3sjt126com
SVN
Subversion有一个很标准的目录结构,是这样的。比如项目是proj,svn地址为svn://proj/,那么标准的svn布局是svn://proj/|+-trunk+-branches+-tags这是一个标准的布局,trunk为主开发目录,branches为分支开发目录,tags为tag存档目录(不允许修改)。但是具体这几个目录应该如何使用,svn并没有明确的规范,更多的还是用户自己的习惯。
- 对软件设计的思考
e200702084
设计模式数据结构算法ssh活动
软件设计的宏观与微观
软件开发是一种高智商的开发活动。一个优秀的软件设计人员不仅要从宏观上把握软件之间的开发,也要从微观上把握软件之间的开发。宏观上,可以应用面向对象设计,采用流行的SSH架构,采用web层,业务逻辑层,持久层分层架构。采用设计模式提供系统的健壮性和可维护性。微观上,对于一个类,甚至方法的调用,从计算机的角度模拟程序的运行情况。了解内存分配,参数传
- 同步、异步、阻塞、非阻塞
geeksun
非阻塞
同步、异步、阻塞、非阻塞这几个概念有时有点混淆,在此文试图解释一下。
同步:发出方法调用后,当没有返回结果,当前线程会一直在等待(阻塞)状态。
场景:打电话,营业厅窗口办业务、B/S架构的http请求-响应模式。
异步:方法调用后不立即返回结果,调用结果通过状态、通知或回调通知方法调用者或接收者。异步方法调用后,当前线程不会阻塞,会继续执行其他任务。
实现:
- Reverse SSH Tunnel 反向打洞實錄
hongtoushizi
ssh
實際的操作步驟:
# 首先,在客戶那理的機器下指令連回我們自己的 Server,並設定自己 Server 上的 12345 port 會對應到幾器上的 SSH port
ssh -NfR 12345:localhost:22
[email protected]
# 然後在 myhost 的機器上連自己的 12345 port,就可以連回在客戶那的機器
ssh localhost -p 1
- Hibernate中的缓存
Josh_Persistence
一级缓存Hiberante缓存查询缓存二级缓存
Hibernate中的缓存
一、Hiberante中常见的三大缓存:一级缓存,二级缓存和查询缓存。
Hibernate中提供了两级Cache,第一级别的缓存是Session级别的缓存,它是属于事务范围的缓存。这一级别的缓存是由hibernate管理的,一般情况下无需进行干预;第二级别的缓存是SessionFactory级别的缓存,它是属于进程范围或群集范围的缓存。这一级别的缓存
- 对象关系行为模式之延迟加载
home198979
PHP架构延迟加载
形象化设计模式实战 HELLO!架构
一、概念
Lazy Load:一个对象,它虽然不包含所需要的所有数据,但是知道怎么获取这些数据。
延迟加载貌似很简单,就是在数据需要时再从数据库获取,减少数据库的消耗。但这其中还是有不少技巧的。
二、实现延迟加载
实现Lazy Load主要有四种方法:延迟初始化、虚
- xml 验证
pengfeicao521
xmlxml解析
有些字符,xml不能识别,用jdom或者dom4j解析的时候就报错
public static void testPattern() {
// 含有非法字符的串
String str = "Jamey친ÑԂ
- div设置半透明效果
spjich
css半透明
为div设置如下样式:
div{filter:alpha(Opacity=80);-moz-opacity:0.5;opacity: 0.5;}
说明:
1、filter:对win IE设置半透明滤镜效果,filter:alpha(Opacity=80)代表该对象80%半透明,火狐浏览器不认2、-moz-opaci
- 你真的了解单例模式么?
w574240966
java单例设计模式jvm
单例模式,很多初学者认为单例模式很简单,并且认为自己已经掌握了这种设计模式。但事实上,你真的了解单例模式了么。
一,单例模式的5中写法。(回字的四种写法,哈哈。)
1,懒汉式
(1)线程不安全的懒汉式
public cla