安装和加载R包
- 1.设置镜像tools ->global options ->packages
- 2.安装 install.package("")
- 3.加载package:library()
dplyr包
五个基本函数
mutate(test, new = Sepal.Length * Sepal.Width)
Sepal.Length Sepal.Width Petal.Length Petal.Width Species new
1 5.1 3.5 1.4 0.2 setosa 17.85
2 4.9 3.0 1.4 0.2 setosa 14.70
3 7.0 3.2 4.7 1.4 versicolor 22.40
4 6.4 3.2 4.5 1.5 versicolor 20.48
5 6.3 3.3 6.0 2.5 virginica 20.79
6 5.8 2.7 5.1 1.9 virginica 15.66
select(test,1)
Sepal.Length
1 5.1
2 4.9
51 7.0
52 6.4
101 6.3
102 5.8
select(test,c(1,5))
Sepal.Length Species
1 5.1 setosa
2 4.9 setosa
51 7.0 versicolor
52 6.4 versicolor
101 6.3 virginica
102 5.8 virginica
> select(test,1:5)
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
51 7.0 3.2 4.7 1.4 versicolor
52 6.4 3.2 4.5 1.5 versicolor
101 6.3 3.3 6.0 2.5 virginica
102 5.8 2.7 5.1 1.9 virginica
> select(test,rowname = "Sepal.Length")
rowname
1 5.1
2 4.9
51 7.0
52 6.4
101 6.3
102 5.8
> select(test,Sepal.Length)
Sepal.Length
1 5.1
2 4.9
51 7.0
52 6.4
101 6.3
102 5.8
> select(test, Petal.Length, Petal.Width)
Petal.Length Petal.Width
1 1.4 0.2
2 1.4 0.2
51 4.7 1.4
52 4.5 1.5
101 6.0 2.5
102 5.1 1.9
> vars <- c("Petal.Length", "Petal.Width")
> select(test, one_of(vars))
Petal.Length Petal.Width
1 1.4 0.2
2 1.4 0.2
51 4.7 1.4
52 4.5 1.5
101 6.0 2.5
102 5.1 1.9
filter(test, Species == "setosa")
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
filter(test, Species == "setosa"&Sepal.Length > 5 )
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
> filter(test, Species %in% c("setosa","versicolor"))
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 7.0 3.2 4.7 1.4 versicolor
4 6.4 3.2 4.5 1.5 versicolor
- 4.arrange(),按某1列或某几列对整个表格进行排序
arrange(test, Sepal.Length)#默认从小到大排序
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 4.9 3.0 1.4 0.2 setosa
2 5.1 3.5 1.4 0.2 setosa
3 5.8 2.7 5.1 1.9 virginica
4 6.3 3.3 6.0 2.5 virginica
5 6.4 3.2 4.5 1.5 versicolor
6 7.0 3.2 4.7 1.4 versicolor
> arrange(test, desc(Sepal.Length))
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 7.0 3.2 4.7 1.4 versicolor
2 6.4 3.2 4.5 1.5 versicolor
3 6.3 3.3 6.0 2.5 virginica
4 5.8 2.7 5.1 1.9 virginica
5 5.1 3.5 1.4 0.2 setosa
6 4.9 3.0 1.4 0.2 setosa
summarise(test, mean(Sepal.Length), sd(Sepal.Length))
mean(Sepal.Length) sd(Sepal.Length)
1 5.916667 0.8084965
group_by(test, Species)
# A tibble: 6 x 5
# Groups: Species [3]
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
*
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3 1.4 0.2 setosa
3 7 3.2 4.7 1.4 versicolor
4 6.4 3.2 4.5 1.5 versicolor
5 6.3 3.3 6 2.5 virginica
6 5.8 2.7 5.1 1.9 virginica
> summarise(group_by(test, Species),mean(Sepal.Length), sd(Sepal.Length))
# A tibble: 3 x 3
Species `mean(Sepal.Length)` `sd(Sepal.Length)`
1 setosa 5 0.141
2 versicolor 6.7 0.424
3 virginica 6.05 0.354
两个实用技能
- 1:管道操作 %>% (cmd/ctr + shift + M)
test %>%
+ group_by(Species) %>%
+ summarise(mean(Sepal.Length), sd(Sepal.Length))
# A tibble: 3 x 3
Species `mean(Sepal.Length)` `sd(Sepal.Length)`
1 setosa 5 0.141
2 versicolor 6.7 0.424
3 virginica 6.05 0.354
count(test,Species)
# A tibble: 3 x 2
Species n
1 setosa 2
2 versicolor 2
3 virginica 2
处理关系数据
test1
x z
1 b A
2 e B
3 f C
4 x D
test2
x y
1 a 1
2 b 2
3 c 3
4 d 4
5 e 5
6 f 6
inner_join(test1, test2, by = "x")
x z y
1 b A 2
2 e B 5
3 f C 6
left_join(test1, test2, by = 'x')
x z y
1 b A 2
2 e B 5
3 f C 6
4 x D NA
> left_join(test2, test1, by = 'x')
x y z
1 a 1
2 b 2 A
3 c 3
4 d 4
5 e 5 B
6 f 6 C
full_join( test1, test2, by = 'x')
x z y
1 b A 2
2 e B 5
3 f C 6
4 x D NA
5 a 1
6 c 3
7 d 4
- 4.半连接:返回能够与y表匹配的x表所有记录semi_join
semi_join(x = test1, y = test2, by = 'x') #返回能够与y表匹配的x表所有记录semi_join
x z
1 b A
2 e B
3 f C
- 5.反连接:返回无法与y表匹配的x表的所记录anti_join
anti_join(x = test2, y = test1, by = 'x') #返回无法与y表匹配的x表的所记录anti_join
x y
1 a 1
2 c 3
3 d 4
test1 <- data.frame(x = c(1,2,3,4), y = c(10,20,30,40))
> test1
x y
1 1 10
2 2 20
3 3 30
4 4 40
> test2 <- data.frame(x = c(5,6), y = c(50,60))
> test2
x y
1 5 50
2 6 60
> test3 <- data.frame(z = c(100,200,300,400))
> test3
z
1 100
2 200
3 300
4 400
> bind_rows(test1, test2)
x y
1 1 10
2 2 20
3 3 30
4 4 40
5 5 50
6 6 60
> bind_cols(test1, test3)
x y z
1 1 10 100
2 2 20 200
3 3 30 300
4 4 40 400