目录
第一关
第二关
第三关
第四关
第五关
第六关
第七关
第八关
第九关
第十关
第十一关
第十二关
第十三关
第十四关
第十五关
第十六关
第十七关
第十八关
第十九关
第二十关
第二十一关
第二十二关
第二十三关
第二十四关
第二十五关
第二十六关
第二十七关
第二十八关
第二十九关
第三十关
第三十一关
第三十二关
第三十三关
第三十四关
第三十五关
第三十六关
第三十七关
第三十八关
本着来熟悉python的,遇到这节证明题目,于是尝试以下。较难的题是23题和29题,这两题都使用了导出规则;以及20题会显得吓人。
左推右、右推左、则左<->右;。
Premise:
Conclusion: (A->(B->C))<->(B->(A->C))
1. A->(B->C),B,A |- A prem
2. A->(B->C),B,A |- B prem
3. A->(B->C),B,A |- A->(B->C) prem
4. A->(B->C),B,A |- B->C imple 1,3
5. A->(B->C),B,A |- C imple 2,4
6. A->(B->C),B |- A->C impli 5
7. A->(B->C) |- B->(A->C) impli 6
8. B->(A->C),A,B |- A prem
9. B->(A->C),A,B |- B prem
10. B->(A->C),A,B |- B->(A->C) prem
11. B->(A->C),A,B |- A->C imple 9,10
12. B->(A->C),A,B |- C imple 8,11
13. B->(A->C),A |- B->C impli 12
14. B->(A->C) |- A->(B->C) impli 13
15. |- (A->(B->C))<->(B->(A->C)) equivi 7,14
并的交换律;。
Premise: (A\/B)\/C
Conclusion: A\/(B\/C)
1. A |- A prem
2. A |- A\/(B\/C) ori 1
3. B |- B prem
4. B |- B\/C ori 3
5. B |- A\/(B\/C) ori 4
6. C |- C prem
7. C |- B\/C ori 6
8. C |- A\/(B\/C) ori 7
9. A\/B |- A\/(B\/C) ore 2,5
10. (A\/B)\/C |- A\/(B\/C) ore 9,8
并的交换律;。
Premise: A\/(B\/C)
Conclusion: (A\/B)\/C
1. C |- C prem
2. C |- (A\/B)\/C ori 1
3. B |- B prem
4. B |- A\/B ori 3
5. B |- (A\/B)\/C ori 4
6. A |- A prem
7. A |- A\/B ori 6
8. A |- (A\/B)\/C ori 7
9. B\/C |- (A\/B)\/C ore 2,5
10. A\/(B\/C) |- (A\/B)\/C ore 9,8
命题取反,蕴含指向也取反;。
Premise:
Conclusion: (A->B)<->(~B -> ~A)
1. A->B,~B,A |- ~B prem
2. A->B,~B,A |- A prem
3. A->B,~B,A |- A->B prem
4. A->B,~B,A |- B imple 2,3
5. A->B,~B |- ~A ni 1,4
6. A->B |- ~B -> ~A impli 5
7. ~B -> ~A,A,~B |- A prem
8. ~B -> ~A,A,~B |- ~B prem
9. ~B -> ~A,A,~B |- ~B -> ~A prem
10 ~B -> ~A,A,~B |- ~A imple 8,9
11 ~B -> ~A,A |- ~(~B) ni 7,10
12. ~B -> ~A,A |- B nne 11
13. ~B -> ~A |- A->B impli 12
14. |- (A->B)<->(~B -> ~A) equivi 6,13
与自身取反求交; 永假。
Premise: A/\~A
Conclusion: F
1. A/\~A |- A/\~A prem
2. A/\~A |- A ande 1
3. A/\~A |- ~A ande 1
4. A/\~A |- F ne 2,3
与自身取反求交; 永假。
Premise: F
Conclusion: A/\~A
1. F |- F prem
2. F |- ~F fi
3. F |- A/\~A ne 1,2
。
Premise: A->(B->C)
Conclusion: A/\B->C
1. A->(B->C),A/\B |- A/\B prem
2. A->(B->C),A/\B |- A ande 1
3. A->(B->C),A/\B |- B ande 1
4. A->(B->C),A/\B |- A->(B->C) prem
5. A->(B->C),A/\B |- B->C imple 2,4
6. A->(B->C),A/\B |- C imple 3,5
7. A->(B->C) |- A/\B->C impli 6
。
Premise: A/\B->C
Conclusion: A->(B->C)
1. A/\B->C,A,B |- A prem
2. A/\B->C,A,B |- B prem
3. A/\B->C,A,B |- A/\B->C prem
4. A/\B->C,A,B |- A/\B andi 1,2
5. A/\B->C,A,B |- C imple 3,4
6. A/\B->C,A |- B->C impli 5
7. A/\B->C |- A->(B->C) impli 6
量词,这些题目都是显然的,主要是如何用给定的描述系统写过程。
Premise:(All x)P(x)
Conclusion:(Exist x)P(x)
1. (All x)P(x) |- (All x)P(x) prem
2. (All x)P(x) |- P(a) ae 1 (a/x)
3. (All x)P(x) |- (Exist x)P(x) ei 2 (a/x)
Premise: (Exist x)(All y)P(x,y)
Conclusion: (All y)(Exist x)P(x,y)
1. (All y)P(x,y) |- (All y)P(x,y) prem
2. (All y)P(x,y) |- P(x,b) ae 1 (b/y)
3. (All y)P(x,y) |- (Exist x)P(x,b) ei 2 (x/x)
4. (All y)P(x,y) |- (All y)(Exist x)P(x,y) ai 3
5. (Exist x)(All y)P(x,y) |- (All y)(Exist x)P(x,y) lei 4
Premise: (All x)P(x)\/(All x)Q(x)
Conclusion: (All x)(P(x)\/Q(x))
1. (All x)P(x) |- (All x)P(x) prem
2. (All x)P(x) |- P(b) ae 1 (b/x)
3. (All x)P(x) |- P(b)\/Q(b) ori 2
4. (All x)Q(x) |- (All x)Q(x) prem
5. (All x)Q(x) |- Q(b) ae 4 (b/x)
6. (All x)Q(x) |- P(b)\/Q(b) ori 5
7. (All x)P(x)\/(All x)Q(x) |- P(b)\/Q(b) ore 3,6
8. (All x)P(x)\/(All x)Q(x) |- (All x)(P(x)\/Q(x)) ai 7
Premise: (All x)(A->P(x))
Conclusion: A->(All x)P(x)
1. (All x)(A->P(x)),A |- (All x)(A->P(x)) prem
2. (All x)(A->P(x)),A |- A->P(b) ae 1 (b/x)
3. (All x)(A->P(x)),A |- A prem
4. (All x)(A->P(x)),A |- P(b) imple 3,2
5. (All x)(A->P(x)),A |- (All x)P(x) ai 4
6. (All x)(A->P(x)) |- A->(All x)P(x) impli 5
Premise: A->(All x)P(x)
Conclusion: (All x)(A->P(x))
1. A->(All x)P(x),A |- A prem
2. A->(All x)P(x),A |- A->(All x)P(x) prem
3. A->(All x)P(x),A |- (All x)P(x) imple 1,2
4. A->(All x)P(x),A |- P(x) ae 3 (x/x)
5. A->(All x)P(x) |- A->P(x) impli 4
6. A->(All x)P(x) |- (All x)(A->P(x)) ai 5
Premise: (Exist x)(P(x)\/Q(x))
Conclusion: (Exist x)P(x)\/(Exist x)Q(x)
1. P(x) |- P(x) prem
2. Q(x) |- Q(x) prem
3. P(x) |- (Exist x)P(x) ei 1 (x/x)
4. Q(x) |- (Exist x)Q(x) ei 2 (x/x)
5. P(x) |- (Exist x)P(x)\/(Exist x)Q(x) ori 3
6. Q(x) |- (Exist x)P(x)\/(Exist x)Q(x) ori 4
7. P(x)\/Q(x) |- (Exist x)P(x)\/(Exist x)Q(x) ore 5,6
8. (Exist x)(P(x)\/Q(x)) |- (Exist x)P(x)\/(Exist x)Q(x) lei 7
Premise: (Exist x)P(x)\/(Exist x)Q(x)
Conclusion: (Exist x)(P(x)\/Q(x))
1. P(x) |- P(x) prem
2. Q(x) |- Q(x) prem
3. P(x) |- P(x)\/Q(x) ori 1
4. Q(x) |- P(x)\/Q(x) ori 2
5. (Exist x)P(x) |- (Exist x)(P(x)\/Q(x)) eei 3
6. (Exist x)Q(x) |- (Exist x)(P(x)\/Q(x)) eei 4
7. (Exist x)P(x)\/(Exist x)Q(x) |- (Exist x)(P(x)\/Q(x)) ore 5,6
Premise: (All x)(P(x)/\Q(x))
Conclusion: (All x)P(x)/\(All x)Q(x)
1. P(x)/\Q(x) |- P(x)/\Q(x) prem
2. P(x)/\Q(x) |- P(x) ande 1
3. P(x)/\Q(x) |- Q(x) ande 1
4. (All x)(P(x)/\Q(x)) |- (All x)P(x) aai 2
5. (All x)(P(x)/\Q(x)) |- (All x)Q(x) aai 3
6. (All x)(P(x)/\Q(x)) |- (All x)P(x)/\(All x)Q(x) andi 4,5
Premise: (All x)P(x)/\(All x)Q(x)
Conclusion: (All x)(P(x)/\Q(x))
1. (All x)P(x)/\(All x)Q(x) |- (All x)P(x)/\(All x)Q(x) prem
2. (All x)P(x)/\(All x)Q(x) |- (All x)P(x) ande 1
3. (All x)P(x)/\(All x)Q(x) |- (All x)Q(x) ande 1
4. (All x)P(x)/\(All x)Q(x) |- P(t) ae 2 (t/x)
5. (All x)P(x)/\(All x)Q(x) |- Q(t) ae 3 (t/x)
6. (All x)P(x)/\(All x)Q(x) |- P(t)/\Q(t) andi 4,5
7. (All x)P(x)/\(All x)Q(x) |- (All x)(P(x)/\Q(x)) ai 6
Premise: (Exist x)P(x)->(All x)Q(x)
Conclusion: (All x)(P(x)->Q(x))
1. (Exist x)P(x)->(All x)Q(x),P(x) |- (Exist x)P(x)->(All x)Q(x) prem
2. (Exist x)P(x)->(All x)Q(x),P(x) |- P(x) prem
3. (Exist x)P(x)->(All x)Q(x),P(x) |- (Exist x)P(x) ei 2 (x/x)
4. (Exist x)P(x)->(All x)Q(x),P(x) |- (All x)Q(x) imple 3,1
5. (Exist x)P(x)->(All x)Q(x),P(x) |- Q(x) ae 4 (x/x)
6. (Exist x)P(x)->(All x)Q(x) |- P(x)->Q(x) impli 5
7. (Exist x)P(x)->(All x)Q(x) |- (All x)(P(x)->Q(x)) ai 6
Premise: (All x)(P(x)->Q(x))
Conclusion: (All x)P(x)->(All x)Q(x)
1. (All x)(P(x)->Q(x)),(All x)P(x) |- (All x)P(x) prem
2. (All x)(P(x)->Q(x)),(All x)P(x) |- (All x)(P(x)->Q(x)) prem
3. (All x)(P(x)->Q(x)),(All x)P(x) |- P(x) ae 1 (x/x)
4. (All x)(P(x)->Q(x)),(All x)P(x) |- P(x)->Q(x) ae 2 (x/x)
5. (All x)(P(x)->Q(x)),(All x)P(x) |- Q(x) imple 3,4
6. (All x)(P(x)->Q(x)),(All x)P(x) |- (All x)Q(x) ai 5
7. (All x)(P(x)->Q(x)) |- (All x)P(x)->(All x)Q(x) impli 6
这题目有点吓人,虚张声势;注意ee那条规则运用时,不要出现代替量在前提之类的错误。
Premise: (All x)(All y)(R(x,y)->R(y,x)),(All x)(All y)(All z)(R(x,y)/\R(y,z)->R(x,z)),(All x)(Exist y)R(x,y)
Conclusion: (All x)R(x,x)
1. (All x)(All y)(R(x,y)->R(y,x)),(All x)(All y)(All z)(R(x,y)/\R(y,z)->R(x,z)),(All x)(Exist y)R(x,y) |- (All x)(Exist y)R(x,y) prem
2. (All x)(All y)(R(x,y)->R(y,x)),(All x)(All y)(All z)(R(x,y)/\R(y,z)->R(x,z)),(All x)(Exist y)R(x,y) |- (Exist y)R(x,y) ae 1 (x/x)
3. (All x)(All y)(R(x,y)->R(y,x)),(All x)(All y)(All z)(R(x,y)/\R(y,z)->R(x,z)),(All x)(Exist y)R(x,y),R(x,b) |- R(x,b) prem
4. (All x)(All y)(R(x,y)->R(y,x)),(All x)(All y)(All z)(R(x,y)/\R(y,z)->R(x,z)),(All x)(Exist y)R(x,y),R(x,b) |- (All x)(All y)(R(x,y)->R(y,x)) prem
5. (All x)(All y)(R(x,y)->R(y,x)),(All x)(All y)(All z)(R(x,y)/\R(y,z)->R(x,z)),(All x)(Exist y)R(x,y),R(x,b) |- (All y)(R(x,y)->R(y,x)) ae 4 (x/x)
6. (All x)(All y)(R(x,y)->R(y,x)),(All x)(All y)(All z)(R(x,y)/\R(y,z)->R(x,z)),(All x)(Exist y)R(x,y),R(x,b) |- R(x,b)->R(b,x) ae 5 (b/y)
7. (All x)(All y)(R(x,y)->R(y,x)),(All x)(All y)(All z)(R(x,y)/\R(y,z)->R(x,z)),(All x)(Exist y)R(x,y),R(x,b) |- R(b,x) imple 3,6
8. (All x)(All y)(R(x,y)->R(y,x)),(All x)(All y)(All z)(R(x,y)/\R(y,z)->R(x,z)),(All x)(Exist y)R(x,y),R(x,b) |- R(x,b)/\R(b,x) andi 3,7
9. (All x)(All y)(R(x,y)->R(y,x)),(All x)(All y)(All z)(R(x,y)/\R(y,z)->R(x,z)),(All x)(Exist y)R(x,y),R(x,b) |- (All x)(All y)(All z)(R(x,y)/\R(y,z)->R(x,z)) prem
10. (All x)(All y)(R(x,y)->R(y,x)),(All x)(All y)(All z)(R(x,y)/\R(y,z)->R(x,z)),(All x)(Exist y)R(x,y),R(x,b) |- (All y)(All z)(R(x,y)/\R(y,z)->R(x,z)) ae 9 (x/x)
11. (All x)(All y)(R(x,y)->R(y,x)),(All x)(All y)(All z)(R(x,y)/\R(y,z)->R(x,z)),(All x)(Exist y)R(x,y),R(x,b) |- (All z)(R(x,b)/\R(b,z)->R(x,z)) ae 10 (b/y)
12. (All x)(All y)(R(x,y)->R(y,x)),(All x)(All y)(All z)(R(x,y)/\R(y,z)->R(x,z)),(All x)(Exist y)R(x,y),R(x,b) |- R(x,b)/\R(b,x)->R(x,x) ae 11 (x/z)
13. (All x)(All y)(R(x,y)->R(y,x)),(All x)(All y)(All z)(R(x,y)/\R(y,z)->R(x,z)),(All x)(Exist y)R(x,y),R(x,b) |- R(x,x) imple 8,12
14. (All x)(All y)(R(x,y)->R(y,x)),(All x)(All y)(All z)(R(x,y)/\R(y,z)->R(x,z)),(All x)(Exist y)R(x,y) |- R(x,x) ee 2,13
15. (All x)(All y)(R(x,y)->R(y,x)),(All x)(All y)(All z)(R(x,y)/\R(y,z)->R(x,z)),(All x)(Exist y)R(x,y) |- (All x)R(x,x) ai 14
应该是叫摩根定律;。
Premise:
Conclusion: ~(A/\B)<->(~A\/~B)
1. ~A,A/\B |- A/\B prem
2. ~A,A/\B |- A ande 1
3. ~A,A/\B |- ~A prem
4. ~A |- ~(A/\B) ni 2,3
5. ~B,A/\B |- A/\B prem
6. ~B,A/\B |- B ande 5
7. ~B,A/\B |- ~B prem
8. ~B |- ~(A/\B) ni 6,7
9. ~A\/~B |- ~(A/\B) ore 4,8
10. ~(A/\B),A,B |- ~(A/\B) prem
11 ~(A/\B),A,B |- A prem
12. ~(A/\B),A,B |- B prem
13. ~(A/\B),A,B |- A/\B andi 11,12
14. ~(A/\B),A |- ~B ni 10,13
15. ~(A/\B),A |- ~A\/~B ori 14
16. ~(A/\B),~A |- ~A prem
17. ~(A/\B),~A |- ~A\/~B ori 16
18. ~(A/\B) |- ~A\/~B preme 15,17
19. |- ~(A/\B)<->(~A\/~B) equivi 9,18
分配律。
Premise:
Conclusion: A/\(B\/C)<->(A/\B)\/(A/\C)
1. A/\B |- A/\B prem
2. A/\B |- A ande 1
3. A/\B |- B ande 1
4. A/\B |- B\/C ori 3
5. A/\B |- A/\(B\/C) andi 2,4
6. A/\C |- A/\C prem
7. A/\C |- A ande 6
8. A/\C |- C ande 6
9. A/\C |- B\/C ori 8
10. A/\C |- A/\(B\/C) andi 7,9
11. (A/\B)\/(A/\C) |- A/\(B\/C) ore 5,10
12. A/\(B\/C) |- A/\(B\/C) prem
13. A/\(B\/C) |- A ande 12
14. A/\(B\/C) |- B\/C ande 12
15. A/\(B\/C),B |- B prem
16. A/\(B\/C),B |- A premi 13
17. A/\(B\/C),B |- A/\B andi 15,16
18. A/\(B\/C),B |- (A/\B)\/(A/\C) ori 17
19. A/\(B\/C),C |- C prem
20. A/\(B\/C),C |- A premi 13
21. A/\(B\/C),C |- A/\C andi 19,20
22. A/\(B\/C),C |- (A/\B)\/(A/\C) ori 21
23. A/\(B\/C),B\/C |- (A/\B)\/(A/\C) ore 18,22
24. A/\(B\/C) |- (B\/C)->(A/\B)\/(A/\C) impli 23
25. A/\(B\/C) |- (A/\B)\/(A/\C) imple 14,24
26. |- A/\(B\/C)<->(A/\B)\/(A/\C) equivi 11,25
分配律2;左边到右边简单,右边到左边困难,使用了给的导出规则。
Premise:
Conclusion: A\/(B/\C)<->(A\/B)/\(A\/C)
1. A |- A prem
2. A |- A\/B ori 1
3. A |- A\/C ori 1
4. A |- (A\/B)/\(A\/C) andi 2,3
5. B/\C |- B/\C prem
6. B/\C |- B ande 5
7. B/\C |- C ande 5
8. B/\C |- A\/B ori 6
9. B/\C |- A\/C ori 7
10. B/\C |- (A\/B)/\(A\/C) andi 8,9
11. A\/(B/\C) |- (A\/B)/\(A\/C) ore 4,10
12. (A\/B)/\(A\/C),~A,~B |- ~(A\/B) dr
13. (A\/B)/\(A\/C),~A,~B |- (A\/B)/\(A\/C) prem
14. (A\/B)/\(A\/C),~A,~B |- A\/B ande 13
15. (A\/B)/\(A\/C),~A |- ~~B ni 12,14
16. (A\/B)/\(A\/C),~A |- B nne 15
17. (A\/B)/\(A\/C),~A,~C |- ~(A\/C) dr
18. (A\/B)/\(A\/C),~A,~C |- (A\/B)/\(A\/C) prem
19. (A\/B)/\(A\/C),~A,~C |- A\/C ande 18
20. (A\/B)/\(A\/C),~A |- ~~C ni 17,19
21. (A\/B)/\(A\/C),~A |- C nne 20
22. (A\/B)/\(A\/C),~A |- B/\C andi 16,21
23. (A\/B)/\(A\/C),~A |- A\/(B/\C) ori 22
24. (A\/B)/\(A\/C),A |- A prem
25. (A\/B)/\(A\/C),A |- A\/(B/\C) ori 24
26. (A\/B)/\(A\/C) |- A\/(B/\C) preme 25,23
27. |- A\/(B/\C)<->(A\/B)/\(A\/C) equivi 11,26
与非的并。
Premise:
Conclusion: A\/F<->A
1. A |- A prem
2. F |- F prem
3. F |- ~F fi
4. F |- A ne 2,3
5. A\/F |- A ore 1,4
6. A |- A\/F ori 1
7. |- A\/F<->A equivi 5,6
与是的交。
Premise:
Conclusion: A/\T<->A
1. A/\T |- A/\T prem
2. A/\T |- A ande 1
3. A |- A prem
4. A |- T ti
5. A |- A/\T andi 3,4
6. |- A/\T<->A equivi 2,5
。
Premise:
Conclusion: (A->B)<->~A\/B
1. B,A |- B prem
2. B |- A->B impli 1
3. ~A,A |- A prem
4. ~A,A |- ~A prem
5. ~A,A |- B ne 3,4
6. ~A |- A->B impli 5
7. ~A\/B |- A->B ore 2,6
8. A->B,A |- A prem
9. A->B,A |- A->B prem
10. A->B,A |- B imple 8,9
11. A->B,A |- ~A\/B ori 10
12. A->B,~A |- ~A prem
13. A->B,~A |- ~A\/B ori 12
14. A->B |- ~A\/B preme 11,13
15. |- (A->B)<->~A\/B equivi 7,14
Premise: ~(A->B)
Conclusion: A
1. ~(A->B),~A,A |- ~A prem
2. ~(A->B),~A,A |- A prem
3. ~(A->B),~A,A |- A->B ne 1,2
4. ~(A->B),~A,A |- B imple 2,3
5. ~(A->B),~A |- A->B impli 4
6. ~(A->B),~A |- ~(A->B) prem
7. ~(A->B) |- ~(~A) ni 5,6
8. ~(A->B) |- A nne 7
Premise: ~(A->B)
Conclusion: ~B
1. ~(A->B),B,A |- B prem
2. ~(A->B),B |- A->B impli 1
3. ~(A->B),B |- ~(A->B) prem
4. ~(A->B) |- ~B ni 2,3
这题的右到左也是用到导出规则,学到的新东西就是把结论的非拿来当前提,然后推出矛盾,也就是反证法。
Premise:
Conclusion: ((Exist x)(C->P(x)))<->(C->(Exist x)P(x))
1. C->P(x),C |- C->P(x) prem
2. C->P(x),C |- C prem
3. C->P(x),C |- P(x) imple 2,1
4. C->P(x),C |- (Exist x)P(x) ei 3 (x/x)
5. C->P(x) |- C->(Exist x)P(x) impli 4
6. (Exist x)(C->P(x)) |- C->(Exist x)P(x) lei 5
7. C->(Exist x)P(x),~(Exist x)(C->P(x)),C |- C prem
8. C->(Exist x)P(x),~(Exist x)(C->P(x)),C |- C->(Exist x)P(x) prem
9. C->(Exist x)P(x),~(Exist x)(C->P(x)),C |- (Exist x)P(x) imple 7,8
10. C->(Exist x)P(x),~(Exist x)(C->P(x)) |- ~(Exist x)(C->P(x)) prem
11. C->(Exist x)P(x),~(Exist x)(C->P(x)) |- (All x)(~(C->P(x))) dr
12. C->(Exist x)P(x),~(Exist x)(C->P(x)) |- ~(C->P(x)) ae 11 (x/x)
13. C->(Exist x)P(x),~(Exist x)(C->P(x)) |- C/\~P(x) dr
14. C->(Exist x)P(x),~(Exist x)(C->P(x)) |- C ande 13
15. C->(Exist x)P(x),~(Exist x)(C->P(x)) |- ~P(x) ande 13
16. C->(Exist x)P(x),~(Exist x)(C->P(x)) |- (All x)(~P(x)) ai 15
17. C->(Exist x)P(x),~(Exist x)(C->P(x)) |- ~(Exist x)P(x) dr
18. C->(Exist x)P(x),~(Exist x)(C->P(x)),C |- ~(Exist x)P(x) premi 17
19. C->(Exist x)P(x),~(Exist x)(C->P(x)) |- ~C ni 9,18
20. C->(Exist x)P(x) |- ~(~(Exist x)(C->P(x))) ni 14,19
21. C->(Exist x)P(x) |- (Exist x)(C->P(x)) nne 20
21. |- ((Exist x)(C->P(x)))<->(C->(Exist x)P(x)) equivi 6,21
Premise: (Exist x)(P(x)->C)
Conclusion: (All x)P(x)->C
1. P(x)->C,P(x) |- P(x) prem
2. P(x)->C,P(x) |- P(x)->C prem
3. P(x)->C,P(x) |- C imple 1,2
4. P(x)->C,(All x)P(x) |- C lai 3
5. P(x)->C |- (All x)P(x)->C impli 4
6. (Exist x)(P(x)->C) |- (All x)P(x)->C lei 5
Premise: (All x)P(x)->C
Conclusion: (Exist x)(P(x)->C)
1. (All x)P(x)->C,P(b) | (All x)P(x)->C prem
2. (All x)P(x)->C,P(b) | P(b) prem
3. (All x)P(x)->C,P(b) | (All x)P(x) ai 2
4. (All x)P(x)->C,P(b) | C imple 1,3
5. (All x)P(x)->C | P(b)->C impli 4
6. (All x)P(x)->C | (Exist x)(P(x)->C) ei 5 (b/x)
Premise: (Exist x)(P(x)\/C)
Conclusion: (Exist x)P(x)\/C
1. P(x) |- P(x) prem
2. C |- C prem
3. P(x) |- (Exist x)P(x) ei 1 (x/x)
4. P(x) |- (Exist x)P(x)\/C ori 3
5. C |- (Exist x)P(x)\/C ori 2
6. P(x)\/C |- (Exist x)P(x)\/C ore 4,5
7. (Exist x)(P(x)\/C) |- (Exist x)P(x)\/C lei 6
Premise: (Exist x)P(x)\/C
Conclusion: (Exist x)(P(x)\/C)
1. P(x) |- P(x) prem
2. C |- C prem
3. C |- P(x)\/C ori 2
4. C |- (Exist x)(P(x)\/C) ei 3 (x/x)
5. P(x) |- P(x)\/C ori 1
6. (Exist x)P(x) |- (Exist x)(P(x)\/C) eei 5
7. (Exist x)P(x)\/C |- (Exist x)(P(x)\/C) ore 4,6
Premise: (All x)(P(x)/\C)
Conclusion: (All x)P(x)/\C
1. P(x)/\C |- P(x)/\C prem
2. P(x)/\C |- P(x) ande 1
3. P(x)/\C |- C ande 1
4. (All x)(P(x)/\C) |- (All x)P(x) aai 2
5. (All x)(P(x)/\C) |- C lai 3
6. (All x)(P(x)/\C) |- (All x)P(x)/\C andi 4,5
Premise: (All x)P(x)/\C
Conclusion: (All x)(P(x)/\C)
1. (All x)P(x)/\C |- (All x)P(x)/\C prem
2. (All x)P(x)/\C |- (All x)P(x) ande 1
3. (All x)P(x)/\C |- C ande 1
4. (All x)P(x)/\C |- P(b) ae 2 (b/x)
5. (All x)P(x)/\C |- P(b)/\C andi 3,4
6. (All x)P(x)/\C |- (All x)(P(x)/\C) ai 5
Premise: ~(All x)P(x)
Conclusion: (Exist x)(~P(x))
1. ~(All x)P(x),~(Exist x)(~P(x)) |- ~(All x)P(x) prem
2. ~(All x)P(x),~(Exist x)(~P(x)),~P(b) |- ~(Exist x)(~P(x)) prem
3. ~(All x)P(x),~(Exist x)(~P(x)),~P(b) |- ~P(b) prem
4. ~(All x)P(x),~(Exist x)(~P(x)),~P(b) |- (Exist x)(~P(x)) ei 3 (b/x)
5. ~(All x)P(x),~(Exist x)(~P(x)) |- ~~P(b) ni 2,4
6. ~(All x)P(x),~(Exist x)(~P(x)) |- P(b) nne 5
7. ~(All x)P(x),~(Exist x)(~P(x)) |- (All x)P(x) ai 6
8. ~(All x)P(x) |- ~~(Exist x)(~P(x)) ni 1,7
9. ~(All x)P(x) |- (Exist x)(~P(x)) nne 8
Premise: (Exist x)(~P(x))
Conclusion: ~(All x)P(x)
1. ~P(b),(All x)P(x) |- ~P(b) prem
2. ~P(b),(All x)P(x) |- (All x)P(x) prem
3. ~P(b),(All x)P(x) |- P(b) ae 2 (b/x)
4. ~P(b) |- ~(All x)P(x) ni 1,3
5. (Exist x)(~P(x)) |- ~(All x)P(x) lei 4
Premise: (Exist x)(P(x)/\Q(x))
Conclusion: (Exist x)P(x)/\(Exist x)Q(x)
1. P(x)/\Q(x) |- P(x)/\Q(x) prem
2. P(x)/\Q(x) |- P(x) ande 1
3. P(x)/\Q(x) |- Q(x) ande 1
4. (Exist x)(P(x)/\Q(x)) |- (Exist x)P(x) eei 2
5. (Exist x)(P(x)/\Q(x)) |- (Exist x)Q(x) eei 3
6. (Exist x)(P(x)/\Q(x)) |- (Exist x)P(x)/\(Exist x)Q(x) andi 4,5
初笔于2023年4月3日。