Focal Loss = -α(1 - p)^γ * log§
其中,α是正样本的调节因子,γ是控制难易样本权重分配的参数,p是模型预测的概率值。
根据公式,可以看出当样本属于困难样本时,(1 - p) 的值较大,因此会增大损失的权重。而对于易分类样本,(1 - p) 的值较小,从而减小损失的权重。
如果我们设置γ=2,表示加大难以区分的样本对损失的贡献。假设目标类别为1(困难样本)和类别2(易分类样本),并假设它们的预测概率分别为0.1和0.9。此时,Focal Loss的计算如下:
对于类别1(困难样本):
Focal Loss = -0.25 * (1 - 0.1)^2 * log(0.1) ≈ 0.798
对于类别2(易分类样本):
Focal Loss = -0.25 * (1 - 0.9)^2 * log(0.9) ≈ -0.097
从计算结果可以看出,对于困难样本(类别1),Focal Loss的值较大;而对于易分类样本(类别2),Focal Loss的值较小。这意味着模型会更加关注困难样本的学习,从而提高对难以识别的目标的分类能力。
因此,Focal Loss并不是表示难分类样本对损失函数的贡献较大,而是通过调节因子和参数来平衡难易样本对损失的影响,从而提高模型在类别不平衡和难易样本上的性能。
GIOU(Generalized Intersection over Union)损失和IOU(Intersection over Union)损失是用于目标检测中的两种常见的损失函数。它们在计算目标框之间的重叠程度时有所不同。
IOU Loss是通过计算两个目标框的交集面积与并集面积之比来衡量它们的重叠程度,公式如下:
IOU Loss = 1 - IOU
其中,IOU表示交并比,计算公式为:
IOU = Intersection / Union
GIOU Loss是在IOU Loss的基础上进行了改进,解决了IOU Loss在处理高度不一致的目标框时的缺陷。GIOU Loss考虑了目标框的外接矩形(bounding box)以及相对于外接矩形的误差。
GIOU Loss的公式如下:
GIOU Loss = 1 - GIOU
其中,GIOU表示广义交并比,计算公式为:
GIOU = IOU - C(A, B) / Union
C(A, B)表示目标框A和B的外接矩形的对角线的平方差。
举例说明:
假设我们有两个目标框A和B,它们的坐标分别为A(x1=10, y1=10, x2=60, y2=60)和B(x1=50, y1=50, x2=100, y2=100)。首先,我们计算它们的IOU。
A和B的交集面积为 (x1=50, y1=50, x2=60, y2=60),为100。
A和B的并集面积为 (x1=10, y1=10, x2=100, y2=100),为8100。
计算IOU为 100 / 8100 ≈ 0.0123。
接下来,我们计算GIOU。
目标框A和B的外接矩形对角线的平方差为 (60-10)^2 + (60-10)^2 + (100-50)^2 + (100-50)^2 = 6000
计算GIOU为 IOU - C(A, B) / Union = 0.0123 - 6000 / 8000 = -0.745
因此,IOU Loss为 1 - 0.0123 ≈ 0.9877,而GIOU Loss为 1 - (-0.745) ≈ 1.745。可以看出,GIOU Loss考虑了目标框的外接矩形并给出了更准确的重叠程度衡量,相对于IOU Loss更具有鲁棒性。