- 动手学深度学习笔记|3.2线性回归的从零开始实现(附课后习题答案)
lusterku
动手学深度学习深度学习笔记线性回归
动手学深度学习笔记|3.2线性回归的从零开始实现(附课后习题答案)线性回归的从零开始实现生成数据集读取数据集初始化模型参数定义模型定义损失函数定义优化算法训练练习1.如果我们将权重初始化为零,会发生什么。算法仍然有效吗?2.计算二阶导数时可能会遇到什么问题?这些问题可以如何解决?3.为什么在`squared_loss`函数中需要使用`reshape`函数?4.尝试使用不同的学习率,观察损失函数值下
- Linux应用层开发(5):I2C通讯
lishing6
网络arm开发ubuntulinux嵌入式硬件
1.I2C通讯协议简介I2C通讯协议(Inter-IntegratedCircuit)是由Phiilps公司开发的,由于它引脚少,硬件实现简单,可扩展性强,不需要USART、CAN等通讯协议的外部收发设备,被广泛地使用在多个集成电路(IC)间的通讯。1.1.I2C物理层I2C通讯设备之间的常用连接方式如下图。它的物理层有如下特点:它是一个支持多设备的总线。“总线”指多个设备共用的信号线。在一个I2
- 我用DeepSeek写代码一周后,发现了这些惊人的秘密
fangwulongtian
python开发语言人工智能
大家好,我是武哥。作为一名有着10年开发经验的程序员,最近我深度体验了DeepSeek的代码能力,不得不说,这款国产大模型给了我太多惊喜。今天,我要和大家分享使用DeepSeek一周以来的心得体会,以及我发现的一些不为人知的"秘密武器"。1.惊人发现一:超强的代码理解能力1.1精准的代码解析先看一个实际案例:# 一个较为复杂的Python类class DataProcessor: def _
- c/c++--静态变量和静态函数(static)
躺不平的理查德
c/c++对比c语言c++算法
目录1c++静态函数和静态变量1.1C++静态成员函数:1.1.1定义与基本语法1.1.2不依赖于实例1.1.3访问限制1.1.4共享数据1.1.5作用域与命名1.1.6工厂函数和工厂方法(常用途)1.2c++静态函数()1.3c++静态变量2c语言静态变量:2.1静态局部变量和静态全局变量:2.2静态函数1c++静态函数和静态变量1.1C++静态成员函数:1.1.1定义与基本语法在C++中,使用
- git bash常用命令
qq_37457269
gitbashelasticsearch
GitBash是一个用于在Windows上执行Git命令的命令行工具,它提供了一个类似于Linux的终端环境,允许用户执行各种Git操作。以下是一些常用的GitBash命令及其说明:配置相关gitconfig--globaluser.name“YourName”:设置全局用户名。gitconfig--globaluser.email“youremail@example.com”:设置全局用户邮箱。
- 利用Infinity Embeddings创建文本嵌入
qahaj
python
技术背景介绍在自然语言处理(NLP)任务中,文本嵌入是一种将文本数据转换成固定维度向量的技术。这些向量能够捕捉文本之间的语义关系,使得在后续的任务(如文本分类、相似度计算等)中非常实用。Infinity嵌入模型是一种能够方便创建高质量文本嵌入的现代工具。核心原理解析InfinityEmbeddings利用强大的预训练模型,通过对输入的文本数据进行编码,生成具有语义意义的高维向量。这个过程不仅仅是简
- 仅用10张图片,AI就能学会识别万物?多模态小样本学习颠覆传统!
沃恩智慧
人工智能深度学习人工智能学习深度学习
小样本学习与多模态结合是当前人工智能领域的热门研究方向,旨在通过结合多模态数据(如视觉、语言、音频等)来提高模型在数据稀缺情况下的学习效率和性能。例如,ZS-DeconvNet方法在Nature上发表,展示了其在极低训练数据需求下,将图像分辨率提升超过1.5倍衍射极限的能力。此外,CPE-CLIP和MMFL等方法通过利用预训练模型和冻结的大规模视觉语言模型,实现了跨会话的迁移学习和快速适应新样本。
- 发文新思路!双通道CNN的惊人突破,准确率接近100%!
沃恩智慧
深度学习人工智能cnn人工智能神经网络
双通道CNN作为一种创新的卷积神经网络架构,正引领深度学习领域的新趋势。其核心优势在于并行卷积层设计,能够同时处理更多特征信息,从而显著提升模型的特征表示能力和识别精度。这种架构不仅提高了计算效率,还有效降低了过拟合风险,使其在复杂视觉任务中表现卓越。例如,最新的研究提出了一种名为DDTransUNet的混合网络,结合了Transformer和CNN的优势,通过双分支编码器和双重注意力机制,有效解
- WhisperX:革命性的自动语音识别工具
孔秋宗Mora
WhisperX:革命性的自动语音识别工具项目地址:https://gitcode.com/gh_mirrors/wh/whisperX项目介绍WhisperX是一个开源的自动语音识别(ASR)项目,由m-bain开发。该项目基于OpenAI的Whisper模型,通过引入批量推理、强制音素对齐和语音活动检测等技术,实现了高达70倍的实时转录速度,并提供了准确的单词级时间戳和说话人识别功能。Whis
- 在本地使用gitbash实现github项目的克隆、创建新分支、修改、合并、冲突解决
2401_84447149
程序员github
步骤3:创建新分支步骤4:修改分支文件步骤5:合并分支步骤6:多人协作,解决冲突1.创建分支,修改分支,下载分支2.模拟分支冲突同一个文件内容多人编辑文件被其他人删除步骤1:创建存储库========================================================================一个库通常用于举办单个项目。储存库可以包含文件夹和文件,图像,视频,电子
- Zookeeper(21)Zookeeper的架构组成有哪些?
辞暮尔尔-烟火年年
微服务zookeeper架构分布式
Zookeeper是一个分布式协调服务,常用于分布式应用程序中,提供一致性、高可用性和可靠性。Zookeeper的架构主要由以下几个部分组成:客户端(Client):客户端是与Zookeeper服务器进行交互的实体。客户端通过ZookeeperAPI进行连接、读写数据和注册Watcher等操作。服务器(Server):Zookeeper集群中的每个节点都是一个服务器。服务器有三种角色:Leader
- AI大模型DeepSeek本地部署及使用
zy_xingdian
行癫k8s教程行癫Go教程行癫ArgoCD系列人工智能DeepseekAI行癫xingdian云计算ollama
AI大模型DeepSeek本地部署及使用作者:行癫(盗版必究)一:认识DeepSeek1.什么是DeepSeekDeepSeek中文名深度求索,杭州深度求索人工智能基础技术研究有限公司对外开源,性能对齐OpenAI-o1正式版。二:认识Ollama1.什么是OllamaOllama是一个开源的LLM(大型语言模型)服务工具&#
- 蓝易云 - HBase基础知识
蓝易云
hbase数据库大数据phppython人工智能
HBase是一个分布式、可伸缩、列式存储的NoSQL数据库,它建立在Hadoop的HDFS之上,提供高可靠性、高性能的数据存储和访问。以下是HBase的基础知识:数据模型:HBase以表的形式存储数据,每个表由行和列组成,可以动态添加列族。每行由唯一的行键标识,列族和列限定符(Qualifier)用于唯一标识列。架构:HBase采用分布式架构,数据被分散存储在多个RegionServer上,每个R
- 清华大学DeepSeek资料爆火:一场技术、舆论与时代情绪的共振
deepseek
文末有惊喜哟!近期,清华大学与深度求索公司(DeepSeek)联合发布的智能模型DeepSeek-R1技术资料在国内互联网引发热议。从科技媒体到社交平台,从专业开发者到普通网民,"DeepSeek"一词持续占据热搜榜单。这场看似突如其来的爆火,实质上是技术突破、社会情绪与传播机制共同作用的结果。其背后折射出的,既是中国人工智能领域发展的新里程碑,也是公众对科技自主创新的深层期待。一、技术突破:中国
- DeepSeek代码能力实测:超越GPT-4的背后
fangwulongtian
人工智能数据挖掘机器学习chatgpt
作为一个深耕AI领域多年的开发者,我最近对DeepSeek和GPT-4的代码能力做了一次全方位的对比测试。让我惊讶的是,在很多场景下DeepSeek不仅不输GPT-4,甚至还有独特的优势。今天,我就跟大家分享一下具体的测试结果和背后的技术原理。1.代码理解能力测试1.1复杂代码解析我先用一段较为复杂的代码来测试两个模型的理解能力:class DataProcessor: def __init
- 23年数字化转型总结
数澜悠客
数字化转型职场和发展大数据
问题思考:1、面对科技日新月异的发展,应怎样推进数字化转型,才能让企业在数字时代更好发展?2、当下爆火的大模型引发了新一轮技术革命,如何拥抱大模型技术?在数字化转型大势之下,如何走出符合自己的特色转型之路?理解数字化转型特性在数字化转型的道路上从,最初的电子化到信息化、再到数字化,如今正迈向智能化阶段。数字化转型,是一个科技与数据能力提升的过程,同时也是一个组织和文化变革的过程。总之,数字化转型是
- SAP-ABAP-RANGES的应用用例
爱喝水的鱼丶
ABAP开发之必须知道的SAP-ABAP开发基础详解SAPABAPERP企业级应用经验交流
SAP中的RANGES类型主要用于定义和处理数据区间或范围,它经常用于筛选、查询或其他数据处理场景中,特别是在ABAP开发中。以下是RANGES类型定义的关键点及详细解释:RANGES的组成结构:SIGN:表示区间值的包含或排除关系。通常有两种值:‘I’(Include):表示包含该值或区间。‘E’(Exclude):表示排除该值或区间。OPTION:定义了与LOW和HIGH字段结合使用的比较操作
- 通义灵码全新上线模型选择功能,新增支持 DeepSeek-V3 和 DeepSeek-R1 模型
阿里云云原生
阿里云云原生AI程序员通义灵码
近期,阿里云百炼平台重磅推出DeepSeek-V3、DeepSeek-R1、DeepSeek-R1-Distill-Qwen-32B等6款模型,进一步丰富其AI模型矩阵。与此同时,通义灵码也紧跟步伐,全新上线模型选择功能,支持基于百炼的DeepSeek-V3和DeepSeek-R1满血版671B模型,为AI编程领域注入新活力。通义灵码能力再升级,支持推理模型选择今年1月,通义灵码AI程序员全面上线
- Stack(栈)
alien爱吃蛋挞
Javajava数据结构
定义:在Java编程语言中,栈(Stack)是一种非常重要的数据结构,具有后进先出的特性,即最后入栈的元素最先出栈。栈通常用于存储临时性的数据,如方法调用过程中的局部遍历、操作数栈等。图像理解:我们在这里要理解栈顶和栈底。这里的"顶"和"底"与我们常识中的顶端和底端是相反的。栈顶(Top):栈顶是栈中最后加入的元素的位置。在栈的操作中,所有入栈(push)和出栈(pop)的操作都是针对栈顶元素进行
- Git标签管理:从基础到高阶自动化实践
小钟H呀
gitgit自动化elasticsearch
引言在软件发布过程中,88%的生产事故与版本标记错误相关。Git标签(Tag)作为版本控制的关键锚点,不仅是发布流程的里程碑,更是代码审计和问题追溯的重要依据。本文将深入Git标签的底层机制,揭示企业级标签管理的最佳实践。一、标签的本质与类型(技术原理)1.Git对象模型中的标签轻量标签(Lightweight)直接指向提交的引用指针,存储在.git/refs/tags目录#查看标签文件内容cat
- kong插件详解之Basic Authentication
张声录1
kongkong
1.3、BasicAuthentication支持基于用户名和密码的基本认证,通常用于简单的身份验证场景。1.3.1、环境准备1.3.1.1、创建一个服务,basic-auth-servicecurl-i-s-XPOSThttp://localhost:8001/services\--dataname=basic-auth-service\--dataurl='http://localhost:8
- windows服务器系统巡检脚本,sql server 数据库巡检脚本
zq青
我司数据库一季度巡检一次,所以经常用到下面脚本--1.查看数据库版本信息select@@version--2.查看所有数据库名称及大小execsp_helpdb--3.查看数据库所在机器的操作系统参数execmaster..xp_msver--4.查看数据库启动的参数--5.查看数据库启动时间selectconvert(varchar(30),login_time,120)frommaster..
- 在DeepSeek面前,还需要学习.NET吗?
dotNET跨平台
学习
随着人工智能技术的快速发展,像DeepSeek这样的大模型不断涌现,给技术领域带来了新的变革和挑战。与此同时,.NET作为微软推出的成熟技术平台,也有着自己独特的地位和价值。那么在DeepSeek面前,是否还需要学习.NET呢?答案是肯定的,原因主要有以下几点:应用场景不同-DeepSeek:主要聚焦于自然语言处理、智能对话等人工智能领域,为用户提供智能问答、文本生成等服务。例如,用户可以通过De
- MySQL 8.4 版本(LTS) 发布,一睹为快
m0_74825541
面试学习路线阿里巴巴mysqladbandroid
前言Oracle前几天发布了MySQL8.4版本(LTS),该版本是创新版的第一个长期支持版本。详细规划,请移步技术译文|一文了解MySQL全新版本模型关于MySQL的版本发布规划OracleMySQL官方开发团队推出的新版本将过渡到新的MySQL版本模型。MySQL8.1.0是第一个创新版本,8.0.34+将只进行错误修复,直到8.0生命周期结束(EOL,定于2026年4月)。MySQL8.x版
- mysql大数据量分页查询
懒洋洋大魔王
MySQLmysql数据库
一、什么是MySQL大数据量分页查?MySQL大数据量分页查是指在使用MySQL数据库时,将大量数据分成多个较小的部分进行显示,以提高查询效率和用户体验。分页查询通常用于网页或应用程序中,以便用户能够逐步浏览结果集。二、为什么要用MySQL大数据量分页?随着业务的增长,数据库的数据也呈指数级增长,之前所写的代码mysql的分页都是采用的limit方式进行,这种方式固然代码比较简单,但数据量大了
- [每日动态]科技新闻每日信息差2025年2月14日
我的青春不太冷
科技
###2025年2月14日科技新闻每日信息差####引言在快速发展的科技领域,信息差是决定个人和企业竞争力的关键因素。2025年2月14日,全球科技界迎来了多项重要进展,从人工智能到量子计算,从医疗科技到太空探索,这些动态不仅塑造了未来的技术格局,也为普通人提供了新的机遇。####人工智能与计算智能国际会议(AICI2025)AICI2025于今日开幕,聚焦类脑计算和多模态大模型的前沿研究。会议吸
- python期权定价:欧式香草期权-二叉树
2401_88673555
期权定价python金融
1、函数实现:binomial_european_option_price函数基于二叉树模型计算欧式期权的价格,其中:二叉树构建:通过上涨因子u=e^(σ√Δt)和下跌因子d=1/u模拟标的资产价格路径。风险中性概率:p=(e^(rΔt)-d)/(u-d),用于计算未来现金流的期望值。折现因子:df=e^(-rΔt),将未来价值折现到当前。初始化到期价值:计算到期时所有可能价格路径的期权内在价值。
- 当 LSTM 遇上 ARIMA!!
奋进小青
人工智能
大家好,我是小青ARIMA和LSTM是两种常用于时间序列预测的模型,各有优劣。ARIMA擅长捕捉线性关系,而LSTM擅长处理非线性和长时间依赖的关系。将ARIMA和LSTM融合,可以充分发挥它们各自的优势,构建更强大的时间序列预测模型。ARIMA算法ARIMA是一种经典的时间序列预测方法,适用于捕捉时间序列数据中的线性趋势和季节性模式。它通过整合自回归(AR)、差分(I)、移动平均(MA)三部分,
- 遥感影像建筑物提取
V搜xhliang0246
人工智能计算机视觉深度学习python开发语言
遥感影像建筑物提取是一项重要的地理信息处理任务,它在城市规划、环境监测、人口估算和土地覆盖制图等领域具有广泛的应用价值。以下是对遥感影像建筑物提取的详细解析:一、数据采集数据采集是建筑物提取的基础步骤。应选择具有高空间分辨率和多光谱信息的遥感影像,以确保提取的准确性。常用的遥感影像数据包括航空影像和卫星影像:航空影像:拍摄于飞机上,具有较高的空间分辨率,适用于小区域的建筑物提取。卫星影像:拍摄于卫
- Deepseek到底有多牛?ChatGPT、DeepSeek等大语言模型助力科研应用
小艳加油
语言类chatgpt人工智能DeepSeek大语言模型
DeepSeek模型具有以下优势:●高性能推理能力:DeepSeek在推理能力上与国际领先的模型如OpenAI的GPT-4相媲美,能够解决复杂的数学难题、分析法律条文等。●成本优势:DeepSeek的参数规模虽然庞大,但训练和使用费用却低至一个数量级,大大降低了用户的经济负担。例如,DeepSeek-R1的训练费用不到OpenAIGPT-4的十分之一,API定价仅为OpenAIo1
- LeetCode[Math] - #66 Plus One
Cwind
javaLeetCode题解AlgorithmMath
原题链接:#66 Plus One
要求:
给定一个用数字数组表示的非负整数,如num1 = {1, 2, 3, 9}, num2 = {9, 9}等,给这个数加上1。
注意:
1. 数字的较高位存在数组的头上,即num1表示数字1239
2. 每一位(数组中的每个元素)的取值范围为0~9
难度:简单
分析:
题目比较简单,只须从数组
- JQuery中$.ajax()方法参数详解
AILIKES
JavaScriptjsonpjqueryAjaxjson
url: 要求为String类型的参数,(默认为当前页地址)发送请求的地址。
type: 要求为String类型的参数,请求方式(post或get)默认为get。注意其他http请求方法,例如put和 delete也可以使用,但仅部分浏览器支持。
timeout: 要求为Number类型的参数,设置请求超时时间(毫秒)。此设置将覆盖$.ajaxSetup()方法的全局
- JConsole & JVisualVM远程监视Webphere服务器JVM
Kai_Ge
JVisualVMJConsoleWebphere
JConsole是JDK里自带的一个工具,可以监测Java程序运行时所有对象的申请、释放等动作,将内存管理的所有信息进行统计、分析、可视化。我们可以根据这些信息判断程序是否有内存泄漏问题。
使用JConsole工具来分析WAS的JVM问题,需要进行相关的配置。
首先我们看WAS服务器端的配置.
1、登录was控制台https://10.4.119.18
- 自定义annotation
120153216
annotation
Java annotation 自定义注释@interface的用法 一、什么是注释
说起注释,得先提一提什么是元数据(metadata)。所谓元数据就是数据的数据。也就是说,元数据是描述数据的。就象数据表中的字段一样,每个字段描述了这个字段下的数据的含义。而J2SE5.0中提供的注释就是java源代码的元数据,也就是说注释是描述java源
- CentOS 5/6.X 使用 EPEL YUM源
2002wmj
centos
CentOS 6.X 安装使用EPEL YUM源1. 查看操作系统版本[root@node1 ~]# uname -a Linux node1.test.com 2.6.32-358.el6.x86_64 #1 SMP Fri Feb 22 00:31:26 UTC 2013 x86_64 x86_64 x86_64 GNU/Linux [root@node1 ~]#
- 在SQLSERVER中查找缺失和无用的索引SQL
357029540
SQL Server
--缺失的索引
SELECT avg_total_user_cost * avg_user_impact * ( user_scans + user_seeks ) AS PossibleImprovement ,
last_user_seek ,
- Spring3 MVC 笔记(二) —json+rest优化
7454103
Spring3 MVC
接上次的 spring mvc 注解的一些详细信息!
其实也是一些个人的学习笔记 呵呵!
- 替换“\”的时候报错Unexpected internal error near index 1 \ ^
adminjun
java“\替换”
发现还是有些东西没有刻子脑子里,,过段时间就没什么概念了,所以贴出来...以免再忘...
在拆分字符串时遇到通过 \ 来拆分,可是用所以想通过转义 \\ 来拆分的时候会报异常
public class Main {
/*
- POJ 1035 Spell checker(哈希表)
aijuans
暴力求解--哈希表
/*
题意:输入字典,然后输入单词,判断字典中是否出现过该单词,或者是否进行删除、添加、替换操作,如果是,则输出对应的字典中的单词
要求按照输入时候的排名输出
题解:建立两个哈希表。一个存储字典和输入字典中单词的排名,一个进行最后输出的判重
*/
#include <iostream>
//#define
using namespace std;
const int HASH =
- 通过原型实现javascript Array的去重、最大值和最小值
ayaoxinchao
JavaScriptarrayprototype
用原型函数(prototype)可以定义一些很方便的自定义函数,实现各种自定义功能。本次主要是实现了Array的去重、获取最大值和最小值。
实现代码如下:
<script type="text/javascript">
Array.prototype.unique = function() {
var a = {};
var le
- UIWebView实现https双向认证请求
bewithme
UIWebViewhttpsObjective-C
什么是HTTPS双向认证我已在先前的博文 ASIHTTPRequest实现https双向认证请求
中有讲述,不理解的读者可以先复习一下。本文是用UIWebView来实现对需要客户端证书验证的服务请求,网上有些文章中有涉及到此内容,但都只言片语,没有讲完全,更没有完整的代码,让人困扰不已。但是此知
- NoSQL数据库之Redis数据库管理(Redis高级应用之事务处理、持久化操作、pub_sub、虚拟内存)
bijian1013
redis数据库NoSQL
3.事务处理
Redis对事务的支持目前不比较简单。Redis只能保证一个client发起的事务中的命令可以连续的执行,而中间不会插入其他client的命令。当一个client在一个连接中发出multi命令时,这个连接会进入一个事务上下文,该连接后续的命令不会立即执行,而是先放到一个队列中,当执行exec命令时,redis会顺序的执行队列中
- 各数据库分页sql备忘
bingyingao
oraclesql分页
ORACLE
下面这个效率很低
SELECT * FROM ( SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_FS_RETURN order by id desc) A ) WHERE RN <20;
下面这个效率很高
SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_
- 【Scala七】Scala核心一:函数
bit1129
scala
1. 如果函数体只有一行代码,则可以不用写{},比如
def print(x: Int) = println(x)
一行上的多条语句用分号隔开,则只有第一句属于方法体,例如
def printWithValue(x: Int) : String= println(x); "ABC"
上面的代码报错,因为,printWithValue的方法
- 了解GHC的factorial编译过程
bookjovi
haskell
GHC相对其他主流语言的编译器或解释器还是比较复杂的,一部分原因是haskell本身的设计就不易于实现compiler,如lazy特性,static typed,类型推导等。
关于GHC的内部实现有篇文章说的挺好,这里,文中在RTS一节中详细说了haskell的concurrent实现,里面提到了green thread,如果熟悉Go语言的话就会发现,ghc的concurrent实现和Go有点类
- Java-Collections Framework学习与总结-LinkedHashMap
BrokenDreams
LinkedHashMap
前面总结了java.util.HashMap,了解了其内部由散列表实现,每个桶内是一个单向链表。那有没有双向链表的实现呢?双向链表的实现会具备什么特性呢?来看一下HashMap的一个子类——java.util.LinkedHashMap。
- 读《研磨设计模式》-代码笔记-抽象工厂模式-Abstract Factory
bylijinnan
abstract
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* Abstract Factory Pattern
* 抽象工厂模式的目的是:
* 通过在抽象工厂里面定义一组产品接口,方便地切换“产品簇”
* 这些接口是相关或者相依赖的
- 压暗面部高光
cherishLC
PS
方法一、压暗高光&重新着色
当皮肤很油又使用闪光灯时,很容易在面部形成高光区域。
下面讲一下我今天处理高光区域的心得:
皮肤可以分为纹理和色彩两个属性。其中纹理主要由亮度通道(Lab模式的L通道)决定,色彩则由a、b通道确定。
处理思路为在保持高光区域纹理的情况下,对高光区域着色。具体步骤为:降低高光区域的整体的亮度,再进行着色。
如果想简化步骤,可以只进行着色(参看下面的步骤1
- Java VisualVM监控远程JVM
crabdave
visualvm
Java VisualVM监控远程JVM
JDK1.6开始自带的VisualVM就是不错的监控工具.
这个工具就在JAVA_HOME\bin\目录下的jvisualvm.exe, 双击这个文件就能看到界面
通过JMX连接远程机器, 需要经过下面的配置:
1. 修改远程机器JDK配置文件 (我这里远程机器是linux).
- Saiku去掉登录模块
daizj
saiku登录olapBI
1、修改applicationContext-saiku-webapp.xml
<security:intercept-url pattern="/rest/**" access="IS_AUTHENTICATED_ANONYMOUSLY" />
<security:intercept-url pattern=&qu
- 浅析 Flex中的Focus
dsjt
htmlFlexFlash
关键字:focus、 setFocus、 IFocusManager、KeyboardEvent
焦点、设置焦点、获得焦点、键盘事件
一、无焦点的困扰——组件监听不到键盘事件
原因:只有获得焦点的组件(确切说是InteractiveObject)才能监听到键盘事件的目标阶段;键盘事件(flash.events.KeyboardEvent)参与冒泡阶段,所以焦点组件的父项(以及它爸
- Yii全局函数使用
dcj3sjt126com
yii
由于YII致力于完美的整合第三方库,它并没有定义任何全局函数。yii中的每一个应用都需要全类别和对象范围。例如,Yii::app()->user;Yii::app()->params['name'];等等。我们可以自行设定全局函数,使得代码看起来更加简洁易用。(原文地址)
我们可以保存在globals.php在protected目录下。然后,在入口脚本index.php的,我们包括在
- 设计模式之单例模式二(解决无序写入的问题)
come_for_dream
单例模式volatile乱序执行双重检验锁
在上篇文章中我们使用了双重检验锁的方式避免懒汉式单例模式下由于多线程造成的实例被多次创建的问题,但是因为由于JVM为了使得处理器内部的运算单元能充分利用,处理器可能会对输入代码进行乱序执行(Out Of Order Execute)优化,处理器会在计算之后将乱序执行的结果进行重组,保证该
- 程序员从初级到高级的蜕变
gcq511120594
框架工作PHPandroidhtml5
软件开发是一个奇怪的行业,市场远远供不应求。这是一个已经存在多年的问题,而且随着时间的流逝,愈演愈烈。
我们严重缺乏能够满足需求的人才。这个行业相当年轻。大多数软件项目是失败的。几乎所有的项目都会超出预算。我们解决问题的最佳指导方针可以归结为——“用一些通用方法去解决问题,当然这些方法常常不管用,于是,唯一能做的就是不断地尝试,逐个看看是否奏效”。
现在我们把淫浸代码时间超过3年的开发人员称为
- Reverse Linked List
hcx2013
list
Reverse a singly linked list.
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
p
- Spring4.1新特性——数据库集成测试
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- C# Ajax上传图片同时生成微缩图(附Demo)
liyonghui160com
1.Ajax无刷新上传图片,详情请阅我的这篇文章。(jquery + c# ashx)
2.C#位图处理 System.Drawing。
3.最新demo支持IE7,IE8,Fir
- Java list三种遍历方法性能比较
pda158
java
从c/c++语言转向java开发,学习java语言list遍历的三种方法,顺便测试各种遍历方法的性能,测试方法为在ArrayList中插入1千万条记录,然后遍历ArrayList,发现了一个奇怪的现象,测试代码例如以下:
package com.hisense.tiger.list;
import java.util.ArrayList;
import java.util.Iterator;
- 300个涵盖IT各方面的免费资源(上)——商业与市场篇
shoothao
seo商业与市场IT资源免费资源
A.网站模板+logo+服务器主机+发票生成
HTML5 UP:响应式的HTML5和CSS3网站模板。
Bootswatch:免费的Bootstrap主题。
Templated:收集了845个免费的CSS和HTML5网站模板。
Wordpress.org|Wordpress.com:可免费创建你的新网站。
Strikingly:关注领域中免费无限的移动优
- localStorage、sessionStorage
uule
localStorage
W3School 例子
HTML5 提供了两种在客户端存储数据的新方法:
localStorage - 没有时间限制的数据存储
sessionStorage - 针对一个 session 的数据存储
之前,这些都是由 cookie 完成的。但是 cookie 不适合大量数据的存储,因为它们由每个对服务器的请求来传递,这使得 cookie 速度很慢而且效率也不