Python中文手册

学习目标:

文章目录

  • 学习目标:
  • 1 front matter前言
    • 1.1 Python is an easy to learn, powerful programming language.
    • 1.2 many free third party Python modules, programs and tools, and additional documentation
    • 1.3 utf-8
    • 1.4 注释符号#
  • 2 解释器 as 计算器
    • The interpreter acts as a simple calculator: you can type an expression at it and it will write the value.
    • 交互模式下,最近一次表达式输出保存在 _ 变量中。这意味着把 Python 当做桌面计算器使用时,可以方便的进行连续计算,例如:
      • Like in C, the equal sign ("=") is used to assign a value to a variable. The value of an assignment is not written:
    • There is full support for floating point; operators with mixed type operands convert the integer operand to floating point:
  • 3.字符串string
    • Besides numbers, Python can also manipulate strings, which can be expressed in several ways. They can be enclosed in single quotes or double quotes:
    • 可以在行加反斜杠做为继续符,这表示下一行是当前行的逻辑沿续。
    • 如果我们创建一个“行”("raw")字符串,\ n序列就不会转为换行,源码中的反斜杠和换行符n都会做为字符串中的数据处理
    • Or, strings can be surrounded in a pair of matching triple-quotes: """ or '''. End of lines do not need to be escaped when using triple-quotes, but they will be included in the string.
    • 字符串可以用 + 号联接(或者说粘合),也可以用 * 号循环。
    • 字符串可以用下标(索引)查询;就像 C 一样,字符串的第一个字符下标是 0。
        • 除了数值, Python 还可以通过几种不同的方法操作字符串。字符串用单引号或双引号标识:
  • 4.开始编程 First Steps Towards Programming
  • Fibonacci series:
    • 4.1 第一行包括了 复合参数:变量 a 和 b 同时被赋值为 0 和 1,然后a, b = b, a+b注意理解 。
    • 4.2 循环体是缩进的:缩进是 Python 对语句分组的方法。
    • 4.3 print 语句末尾的逗号避免了输出中的换行: 注意print b,
    • 4.4 insert()函数
      • python insert()函数用于将指定对象插入列表的指定位置。
      • list.insert(index, obj)
      • list.insert(index = -1, obj)除外,当index = -1时,是插在倒数第二位的,也就是:
    • 4.5 range() 函数 The range() Function
    • 4.6 break 和 continue 语句, 以及 循环中的 else 子句 break and continue Statements, and else Clauses on Loops
      • 但循环被 break 中止的情况下不会执行。以下搜索素数的示例程序演示了这个子句:
    • 4.6 pass 语句 pass Statements
    • 4.8 自定义函数 Defining Functions
  • Now call the function we just defined:
    • 4.9 参数默认值 Default Argument Values
      • 重要警告:默认值只会解析一次。当默认值是一个可变对象,诸如链表、字典或大部分类实例时,会产生一些差异。例如,以下函数在后继的调用中会累积它的参数值:
    • 4.10 关键字参数 Keyword Arguments
      • 引入一个形如 **name 的参数时,它接收一个 字典 ,该字典包含了所有未出现在形式参数列表中的关键字参数。这里可能还会组合使用一个形如 *name 的形式参数,它接收一个元组(下一节中会详细介绍),包含了所有没有出现在形式参数列表中的参数值。(*name 必须在 **name 之前出现) 例如,我们这样定义一个函数:
      • keys.sort()新的Python中不能这么用了,新Python中如下sorted(keywords.keys())
    • 4.11 参数列表的分拆 Unpacking Argument Lists
  • 以下内容看不懂
  • 以下内容看不懂
  • 5 数据结构 Data Structures
    • 5.1 深入链表 More on Lists
    • append( x)
    • extend( L)
    • insert( i, x)
    • remove( x)
    • pop( [i])
    • index( x)
    • count( x)
    • sort( )
    • reverse( )
    • 5.1.1 把链表当作堆栈使用 Using Lists as Stacks
    • 5.1.2 把链表当作队列使用 Using Lists as Queues
    • 5.1.3 函数化编程工具 Functional Programming Tools
    • 5.1.4 链表推导式 List Comprehensions
    • 5.2 del 语句
    • 5.3 元组(Tuples)和序列(Sequences )Tuples and Sequences
  • Tuples may be nested:
    • 5.4 Dictionaries 字典
    • 5.5 循环技巧 Looping Techniques
    • 5.6 深入条件控制 More on Conditions
    • 5.7 比较序列和其它类型 Comparing Sequences and Other Types
  • 6. 模块 Modules
  • Fibonacci numbers module
  • 6.1 深入模块 More on Modules
      • 6.1.1 模块搜索路径 The Module Search Path
      • 6.1.2 “编译”Python文件 ``Compiled'' Python files
      • Some tips for experts:
    • 6.2 标准模块 Standard Modules
    • 6.3 dir() 函数 dir() Function
    • 6.4 包 Packages
      • 6.4.1 以 * 方式加载包 Importing * From a Package
      • 6.4.2 内置包(Intra-package)参考 Intra-package References
      • 6.4.3 多重路径中的包 Packages in Multiple Directories
  • 7. 输入和输出 Input and Output
    • 7.1 设计输出格式 Fancier Output Formatting
  • The repr() of a string adds string quotes and backslashes:
  • The argument to repr() may be any Python object:
  • reverse quotes are convenient in interactive sessions:
    • 7.2 读写文件 Reading and Writing Files
    • open() returns a file object, and is most commonly used with two arguments: "open(filename, mode)".
    • 7.2.1 文件对象(file object)的方法 Methods of File Objects
    • 7.2.2 pickle 模块 pickle Module
  • 8. 错误和异常 Errors and Exceptions
    • 8.1 异常 Exceptions
    • 8.2 处理异常 Handling Exceptions
    • 8.3 抛出异常 Raising Exceptions
    • 8.4 用户自定义异常 User-defined Exceptions
    • 8.5 定义清理行为 Defining Clean-up Actions
  • 9. 类 Classes
    • 9.1 有关术语的话题 A Word About Terminology
    • 9.2 Python 作用域和命名空间 Python Scopes and Name Spaces
    • 9.3 初识类 A First Look at Classes
    • 9.4 一些说明 Random Remarks
  • Function defined outside the class
    • 9.5 继承 Inheritance
    • 9.6 私有变量 Private Variables
    • 9.7 补充 Odds and Ends
  • Fill the fields of the record
    • 9.8 异常也是类 Exceptions Are Classes Too
  • 以上没看
    • 9.9 ==迭代器 Iterators ==
    • 9.10 生成器 Generators
  • 10. 标准库概览 Brief Tour of the Standard Library
    • 10.1 操作系统概览 Operating System Interface
    • 10.2 文件通配符 File Wildcards
    • 10.3 命令行参数 Command Line Arguments
    • 10.4 错误输出重定向和程序终止 Error Output Redirection and Program Termination
    • 10.5 字符串正则匹配 String Pattern Matching
    • 10.6 数学 Mathematics
    • 10.7 互联网访问 Internet Access
    • 10.8 日期和时间 Dates and Times
  • dates are easily constructed and formatted
  • dates support calendar arithmetic
    • 10.9 数据压缩 Data Compression
    • 10.10 性能度量 Performance Measurement
    • 10.11 质量控制 Quality Control

提示:这里可以添加学习目标

例如:

  • 一周掌握Python入门知识

1 front matter前言

1.1 Python is an easy to learn, powerful programming language.

1.2 many free third party Python modules, programs and tools, and additional documentation

1.3 utf-8

根据个人经验,推荐使用 cp-936或utf-8处理中文--译者注

1.4 注释符号#

# this is the first comment
SPAM = 1                 # and this is the second comment
                         # ... and now a third!
STRING = "# This is not a comment."

2 解释器 as 计算器

The interpreter acts as a simple calculator: you can type an expression at it and it will write the value.

交互模式下,最近一次表达式输出保存在 _ 变量中。这意味着把 Python 当做桌面计算器使用时,可以方便的进行连续计算,例如:

>>> tax = 12.5 / 100
>>> price = 100.50
>>> price * tax
12.5625
>>> price + _
113.0625
>>> round(_, 2)
113.06
>>>

Like in C, the equal sign (“=”) is used to assign a value to a variable. The value of an assignment is not written:

>>> width = 20
>>> height = 5*9
>>> width * height
900

There is full support for floating point; operators with mixed type operands convert the integer operand to floating point:

Python完全支持浮点数,不同类型的操作数混在一起时,操作符会把整型转化为浮点数。

>>> 3 * 3.75 / 1.5
7.5
>>> 7.0 / 2
3.5

3.字符串string

Besides numbers, Python can also manipulate strings, which can be expressed in several ways. They can be enclosed in single quotes or double quotes:

除了数值, Python 还可以通过几种不同的方法操作字符串。字符串用单引号或双引号标识:

可以在行加反斜杠做为继续符,这表示下一行是当前行的逻辑沿续。

如果我们创建一个“行”(“raw”)字符串,\ n序列就不会转为换行,源码中的反斜杠和换行符n都会做为字符串中的数据处理

Or, strings can be surrounded in a pair of matching triple-quotes: “”" or ‘’'. End of lines do not need to be escaped when using triple-quotes, but they will be included in the string.

字符串可以用 + 号联接(或者说粘合),也可以用 * 号循环。

字符串可以用下标(索引)查询;就像 C 一样,字符串的第一个字符下标是 0。

除了数值, Python 还可以通过几种不同的方法操作字符串。字符串用单引号或双引号标识:

‘spam eggs’
‘spam eggs’
‘doesn’t’
“doesn’t”
“doesn’t”
“doesn’t”
‘“Yes,” he said.’
‘“Yes,” he said.’
““Yes,” he said.”
‘“Yes,” he said.’
‘“Isn’t,” she said.’
‘“Isn’t,” she said.’

String literals can span multiple lines in several ways. Continuation lines can be used, with a backslash as the last character on the line indicating that the next line is a logical continuation of the line:

字符串可以通过几种方式分行。可以在行加反斜杠做为继续符,这表示下一行是当前行的逻辑沿续。

hello = “This is a rather long string containing\n
several lines of text just as you would do in C.\n
Note that whitespace at the beginning of the line is
significant.”

print hello

Note that newlines would still need to be embedded in the string using \n; the newline following the trailing backslash is discarded. This example would print the following:

注意换行用 \n 来表示;反斜杠后面的新行标识(newline,缩写“n”)会转换为换行符,示例会按如下格式打印:

This is a rather long string containing
several lines of text just as you would do in C.
Note that whitespace at the beginning of the line is significant.

If we make the string literal a ``raw’’ string, however, the \n sequences are not converted to newlines, but the backslash at the end of the line, and the newline character in the source, are both included in the string as data. Thus, the example:

然而,如果我们创建一个“行”(“raw”)字符串,\ n序列就不会转为换行,源码中的反斜杠和换行符n都会做为字符串中的数据处理。如下所示:

hello = r"This is a rather long string containing\n
several lines of text much as you would do in C."

print hello

would print:

会打印为:

This is a rather long string containing\n
several lines of text much as you would do in C.

Or, strings can be surrounded in a pair of matching triple-quotes: “”" or ‘’'. End of lines do not need to be escaped when using triple-quotes, but they will be included in the string.

另外,字符串可以用一对三重引号”””或’''来标识。三重引号中的字符串在行尾不需要换行标记,所有的格式都会包括在字符串中。

print “”"
Usage: thingy [OPTIONS]
-h Display this usage message
-H hostname Hostname to connect to
“”"

produces the following output:

生成以下输出:

Usage: thingy [OPTIONS]
-h Display this usage message
-H hostname Hostname to connect to

The interpreter prints the result of string operations in the same way as they are typed for input: inside quotes, and with quotes and other funny characters escaped by backslashes, to show the precise value. The string is enclosed in double quotes if the string contains a single quote and no double quotes, else it’s enclosed in single quotes. (The print statement, described later, can be used to write strings without quotes or escapes.)

解释器打印出来的字符串与它们输入的形式完全相同:内部的引号,用反斜杠标识的引号和各种怪字符,都精确的显示出来。如果字符串中包含单引号,不包含双引号,可以用双引号引用它,反之可以用单引号。(后面介绍的 print 语句,可以在不使用引号和反斜杠的情况下输出字符串)。

Strings can be concatenated (glued together) with the + operator, and repeated with *:

字符串可以用 + 号联接(或者说粘合),也可以用 * 号循环。

word = ‘Help’ + ‘A’
word
‘HelpA’
‘<’ + word*5 + ‘>’
‘’

Two string literals next to each other are automatically concatenated; the first line above could also have been written “word = ‘Help’ ‘A’”; this only works with two literals, not with arbitrary string expressions:

两个字符串值之间会自动联接,上例第一行可以写成“word = ‘Help’ ‘A’”。这种方式只对字符串值有效,任何字符串表达式都不适用这种方法。

‘str’ ‘ing’ # <- This is ok
‘string’
‘str’.strip() + ‘ing’ # <- This is ok
‘string’
‘str’.strip() ‘ing’ # <- This is invalid
File “”, line 1, in ?
‘str’.strip() ‘ing’
^
SyntaxError: invalid syntax

Strings can be subscripted (indexed); like in C, the first character of a string has subscript (index) 0. There is no separate character type; a character is simply a string of size one. Like in Icon, substrings can be specified with the slice notation: two indices separated by a colon.

字符串可以用下标(索引)查询;就像 C 一样,字符串的第一个字符下标是 0。这里没有独立的字符类型,字符仅仅是大小为一的字符串。就像在 Icon 中那样,字符串的子串可以通过切片标志来表示:两个由冒号隔开的索引。

word[4]
‘A’
word[0:2]
‘He’
word[2:4]
‘lp’

4.开始编程 First Steps Towards Programming

Of course, we can use Python for more complicated tasks than adding two and two together. For instance, we can write an initial sub-sequence of the Fibonacci series as follows:

当然,我们可以用 Python 做比2加2更复杂的事。例如,我们可以用以下的方法输出菲波那契(Fibonacci)序列的子序列:

Fibonacci series:

… # the sum of two elements defines the next
… a, b = 0, 1

while b < 10:
… print b
… a, b = b, a+b

1
1
2
3
5
8

This example introduces several new features.

示例中介绍了一些新功能:

4.1 第一行包括了 复合参数:变量 a 和 b 同时被赋值为 0 和 1,然后a, b = b, a+b注意理解 。

最后一行又一次使用了这种技术,证明了在赋值之前表达式右边先进行了运算。右边的表达式从左到右运算。

while 循环运行在条件为真时执行(这里是 b < 10 )。在 Python 中,类似于 C 任何非零值为真,零为假。这个条件也可以用于字符串或链表,事实上于对任何序列类型,长度非零时为真,空序列为假。示例所用的是一个简单的比较。标准的比较运算符写法和 C 相同: < (小于),> (大于),== (等于),<= (小于等于),>=(大于等于)和 != (不等于)。

4.2 循环体是缩进的:缩进是 Python 对语句分组的方法。

Python 还没有提供一个智能编辑功能,你要在每一个缩进行输入一个 tab 或(一个或多个)空格。实际上你可能会准备更为复杂的文本编辑器来编写你的 Python 程序,大多数文本编辑器都提供了自动缩进功能。交互式的输入一个复杂语句时,需要用一个空行表示完成(因为解释器没办法猜出你什么时候输入最后一行)。需要注意的是每一行都要有相同的缩进来标识这是同一个语句块。

4.3 print 语句末尾的逗号避免了输出中的换行: 注意print b,

a, b = 0, 1
while b < 1000:
… print b,
… a, b = b, a+b

1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987

Note that

4.4 insert()函数

python insert()函数用于将指定对象插入列表的指定位置。

list.insert(index, obj)

1
参数:

index:对象obj需要插入的索引位置。

obj:要插入列表中的对象。

共有如下5种场景:

1:index=0时,从头部插入obj。

2:index > 0 且 index < len(list)时,在index的位置插入obj。

3:当index < 0 且 abs(index) < len(list)时,从中间插入obj,如:-1 表示从倒数第1位插入obj。

4:当index < 0 且 abs(index) >= len(list)时,从头部插入obj。

5:当index >= len(list)时,从尾部插入obj。

list.insert(index = -1, obj)除外,当index = -1时,是插在倒数第二位的,也就是:

lst = [2,2,2,2,2,2]
lst.insert(-1,6)
print(lst)
1
2
3

[2, 2, 2, 2, 2, 6, 2]

例如(没有暗指):

>>> # Measure some strings:
... a = ['cat', 'window', 'defenestrate']
>>> for x in a:
...     print x, len(x)
...
cat 3
window 6
defenestrate 12

It is not safe to modify the sequence being iterated over in the loop (this can only happen for mutable sequence types, such as lists). If you need to modify the list you are iterating over (for example, to duplicate selected items) you must iterate over a copy. The slice notation makes this particularly convenient: 

在迭代过程中修改迭代序列不安全(只有在使用链表这样的可变序列时才会有这样的情况)。如果你想要修改你迭代的序列(例如,复制选择项),你可以迭代它的复本。通常使用切片标识就可以很方便的做到这一点: 


>>> for x in a[:]: # make a slice copy of the entire list
...    if len(x) > 6: a.insert(0, x)
...
>>> a
['defenestrate', 'cat', 'window', 'defenestrate']

4.5 range() 函数 The range() Function

If you do need to iterate over a sequence of numbers, the built-in function range() comes in handy. It generates lists containing arithmetic progressions:

如果你需要一个数值序列,内置函数range()可能会很有用,它生成一个等差级数链表。

range(10)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

The given end point is never part of the generated list; range(10) generates a list of 10 values, exactly the legal indices for items of a sequence of length 10. It is possible to let the range start at another number, or to specify a different increment (even negative; sometimes this is called the `step’):

range(10) 生成了一个包含10个值的链表,它准确的用链表的索引值填充了这个长度为10的列表,所生成的链表中不包括范围中的结束值。也可以让range操作从另一个数值开始,或者可以指定一个不同的步进值(甚至是负数,有时这也被称为“步长”):

range(5, 10)
[5, 6, 7, 8, 9]
range(0, 10, 3)
[0, 3, 6, 9]
range(-10, -100, -30)
[-10, -40, -70]

To iterate over the indices of a sequence, combine range() and len() as follows:

需要迭代链表索引的话,如下所示结合使 用range() 和 len() :

a = [‘Mary’, ‘had’, ‘a’, ‘little’, ‘lamb’]
for i in range(len(a)):
… print i, a[i]

0 Mary
1 had
2 a
3 little
4 lamb

4.6 break 和 continue 语句, 以及 循环中的 else 子句 break and continue Statements, and else Clauses on Loops

The break statement, like in C, breaks out of the smallest enclosing for or while loop.

break 语句和 C 中的类似,用于跳出最近的一级 for 或 while 循环。

The continue statement, also borrowed from C, continues with the next iteration of the loop.

continue 语句是从 C 中借鉴来的,它表示循环继续执行下一次迭代。

Loop statements may have an else clause; it is executed when the loop terminates through exhaustion of the list (with for) or when the condition becomes false (with while), but not when the loop is terminated by a break statement. This is exemplified by the following loop, which searches for prime numbers:

循环可以有一个 else 子句;它在循环迭代完整个列表(对于 for )或执行条件为 false (对于 while )时执行,

但循环被 break 中止的情况下不会执行。以下搜索素数的示例程序演示了这个子句:

for n in range(2, 10):
… for x in range(2, n):
… if n % x == 0:
… print n, ‘equals’, x, ‘*’, n/x
… break
… else:
… # loop fell through without finding a factor
… print n, ‘is a prime number’

2 is a prime number
3 is a prime number
4 equals 2 * 2
5 is a prime number
6 equals 2 * 3
7 is a prime number
8 equals 2 * 4
9 equals 3 * 3

4.6 pass 语句 pass Statements

The pass statement does nothing. It can be used when a statement is required syntactically but the program requires no action. For example:

pass 语句什么也不做。它用于那些语法上必须要有什么语句,但程序什么也不做的场合,例如:

while True:
… pass # Busy-wait for keyboard interrupt

4.8 自定义函数 Defining Functions

We can create a function that writes the Fibonacci series to an arbitrary boundary:

def fib(n): # write Fibonacci series up to n
… “”“Print a Fibonacci series up to n.”“”
… a, b = 0, 1
… while b < n:
… print b,
… a, b = b, a+b

Now call the function we just defined:

… fib(2000)
1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597

以下示例演示了如何从函数中返回一个包含菲波那契数列的数值链表,而不是打印它:

def fib2(n): # return Fibonacci series up to n
… “”“Return a list containing the Fibonacci series up to n.”“”
… result = []
… a, b = 0, 1
… while b < n:
… result.append(b) # see below
… a, b = b, a+b
… return result

f100 = fib2(100) # call it
f100 # write the result
[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]

This example, as usual, demonstrates some new Python features:

4.9 参数默认值 Default Argument Values

默认值在函数定义段被解析,如下所示:

i = 5

def f(arg=i):
    print arg

i = 6
f()

will print 5.

以上代码会打印5。

Important warning: The default value is evaluated only once. This makes a difference when the default is a mutable object such as a list, dictionary, or instances of most classes. For example, the following function accumulates the arguments passed to it on subsequent calls:

重要警告:默认值只会解析一次。当默认值是一个可变对象,诸如链表、字典或大部分类实例时,会产生一些差异。例如,以下函数在后继的调用中会累积它的参数值:

如下函数f(1)后L=[]不再为空,如想为空则只能函数中重命名如下下

def f(a, L=[]):
    L.append(a)
    return L

print f(1)
print f(2)
print f(3)

This will print

这会打印出:

[1]
[1, 2]
[1, 2, 3]

If you don’t want the default to be shared between subsequent calls, you can write the function like this instead:

如果你不想在不同的函数调用之间共享参数默认值,可以如下面的实例一样编写函数:

def f(a, L=None):
if L is None:
L = []
L.append(a)
return L

4.10 关键字参数 Keyword Arguments

Functions can also be called using keyword arguments of the form “keyword = value”. For instance, the following function:

函数可以通过关键字参数的形式来调用,形如"keyword = value"。例如,以下的函数:

def parrot(voltage, state=‘a stiff’, action=‘voom’, type=‘Norwegian Blue’):
print “-- This parrot wouldn’t”, action,
print “if you put”, voltage, “Volts through it.”
print “-- Lovely plumage, the”, type
print “-- It’s”, state, “!”

could be called in any of the following ways:

可以用以下的任一方法调用:

parrot(1000)
parrot(action = ‘VOOOOOM’, voltage = 1000000)
parrot(‘a thousand’, state = ‘pushing up the daisies’)
parrot(‘a million’, ‘bereft of life’, ‘jump’)

but the following calls would all be invalid:

不过以下几种调用是无效的:

parrot() # required argument missing
parrot(voltage=5.0, ‘dead’) # non-keyword argument following keyword
parrot(110, voltage=220) # duplicate value for argument
parrot(actor=‘John Cleese’) # unknown keyword

In general, an argument list must have any positional arguments followed by any keyword arguments, where the keywords must be chosen from the formal parameter names. It’s not important whether a formal parameter has a default value or not. No argument may receive a value more than once – formal parameter names corresponding to positional arguments cannot be used as keywords in the same calls. Here’s an example that fails due to this restriction:

通常,参数列表中的每一个关键字都必须来自于形式参数,每个参数都有对应的关键字。形式参数有没有默认值并不重要。实际参数不能一次赋多个值——形式参数不能在同一次调用中同时使用位置和关键字绑定值。这里有一个例子演示了在这种约束下所出现的失败情况:

def function(a):
… pass

function(0, a=0)
Traceback (most recent call last):
File “”, line 1, in ?
TypeError: function() got multiple values for keyword argument ‘a’

引入一个形如 **name 的参数时,它接收一个 字典 ,该字典包含了所有未出现在形式参数列表中的关键字参数。这里可能还会组合使用一个形如 *name 的形式参数,它接收一个元组(下一节中会详细介绍),包含了所有没有出现在形式参数列表中的参数值。(*name 必须在 **name 之前出现) 例如,我们这样定义一个函数:

keys.sort()新的Python中不能这么用了,新Python中如下sorted(keywords.keys())

def cheeseshop(kind, *arguments, **keywords):
    print("-- Do you have any", kind, '?')
    print("-- I'm sorry, we're all out of", kind)
    for arg in arguments: print(arg)
    print('-'*40)
    keys = keywords.keys()
    # keys.sort()新的Python中不能这么用了,新Python中如下sorted(keywords.keys())
    sorted(keywords.keys())
    for kw in keys: print(kw, ':', keywords[kw])

cheeseshop('Limburger', 'Its very runny222, sir.',
           "It's really very, VERY runny, sir.",
           client='John Cleese',
           shopkeeper='Michael Palin',
           sketch='Cheese Shop Sketch')
and of course it would print: 

当然它会按如下内容打印: 


-- Do you have any Limburger ?
-- I'm sorry, we're all out of Limburger
It's very runny, sir.
It's really very, VERY runny, sir.
----------------------------------------
client : John Cleese
shopkeeper : Michael Palin
sketch : Cheese Shop Sketch

4.11 参数列表的分拆 Unpacking Argument Lists

另有一种相反的情况: 当你要传递的参数已经是一个列表但要调用的函数却接受分开一个个的参数值. 这时候你要把已有的列表拆开来. 例如内建函数 range() 需要要独立的 start, stop 参数. 你可以在调用函数时加一个 * 操作符来自动把参数列表拆开:

>>> range(3, 6)             # normal call with separate arguments
[3, 4, 5]
>>> args = [3, 6]
>>> range(*args)            # call with arguments unpacked from a list
[3, 4, 5]

以下内容看不懂

以下内容看不懂

4.7.3 可变参数表 Arbitrary Argument Lists 
Finally, the least frequently used option is to specify that a function can be called with an arbitrary number of arguments. These arguments will be wrapped up in a tuple. Before the variable number of arguments, zero or more normal arguments may occur. 

最后,一个最不常用的选择是可以让函数调用可变个数的参数。这些参数被包装进一个元组。在这些可变个数的参数之前,可以有零到多个普通的参数: 


def fprintf(file, format, *args):
    file.write(format % args)



4.7.4 参数列表的分拆 Unpacking Argument Lists 
The reverse situation occurs when the arguments are already in a list or tuple but need to be unpacked for a function call requiring separate positional arguments. For instance, the built-in range() function expects separate start and stop arguments. If they are not available separately, write the function call with the *-operator to unpack the arguments out of a list or tuple: 

另有一种相反的情况: 当你要传递的参数已经是一个列表但要调用的函数却接受分开一个个的参数值. 这时候你要把已有的列表拆开来. 例如内建函数 range() 需要要独立的 start, stop 参数. 你可以在调用函数时加一个 * 操作符来自动把参数列表拆开: 


>>> range(3, 6)             # normal call with separate arguments
[3, 4, 5]
>>> args = [3, 6]
>>> range(*args)            # call with arguments unpacked from a list
[3, 4, 5]



4.7.5 Lambda 形式 Lambda Forms 
By popular demand, a few features commonly found in functional programming languages and Lisp have been added to Python. With the lambda keyword, small anonymous functions can be created. Here's a function that returns the sum of its two arguments: "lambda a, b: a+b". Lambda forms can be used wherever function objects are required. They are syntactically restricted to a single expression. Semantically, they are just syntactic sugar for a normal function definition. Like nested function definitions, lambda forms can reference variables from the containing scope: 

出于实际需要,有几种通常在功能性语言和 Lisp 中出现的功能加入到了 Python 。通过 lambda 关键字,可以创建短小的匿名函数。这里有一个函数返回它的两个参数的和:"lambda a, b: a+b"。 Lambda 形式可以用于任何需要的函数对象。出于语法限制,它们只能有一个单独的表达式。语义上讲,它们只是普通函数定义中的一个语法技巧。类似于嵌套函数定义,lambda 形式可以从包含范围内引用变量: 


>>> def make_incrementor(n):
...     return lambda x: x + n
...
>>> f = make_incrementor(42)
>>> f(0)
42
>>> f(1)
43



4.7.6 文档字符串 Documentation Strings 
There are emerging conventions about the content and formatting of documentation strings. 

这里介绍的概念和格式。 

The first line should always be a short, concise summary of the object's purpose. For brevity, it should not explicitly state the object's name or type, since these are available by other means (except if the name happens to be a verb describing a function's operation). This line should begin with a capital letter and end with a period. 

第一行应该是关于对象用途的简介。简短起见,不用明确的陈述对象名或类型,因为它们可以从别的途径了解到(除非这个名字碰巧就是描述这个函数操作的动词)。这一行应该以大写字母开头,以句号结尾。 

If there are more lines in the documentation string, the second line should be blank, visually separating the summary from the rest of the description. The following lines should be one or more paragraphs describing the object's calling conventions, its side effects, etc. 

如果文档字符串有多行,第二行应该空出来,与接下来的详细描述明确分隔。接下来的文档应该有一或多段描述对象的调用约定、边界效应等。 

The Python parser does not strip indentation from multi-line string literals in Python, so tools that process documentation have to strip indentation if desired. This is done using the following convention. The first non-blank line after the first line of the string determines the amount of indentation for the entire documentation string. (We can't use the first line since it is generally adjacent to the string's opening quotes so its indentation is not apparent in the string literal.) Whitespace ``equivalent'' to this indentation is then stripped from the start of all lines of the string. Lines that are indented less should not occur, but if they occur all their leading whitespace should be stripped. Equivalence of whitespace should be tested after expansion of tabs (to 8 spaces, normally). 

Python的解释器不会从多行的文档字符串中去除缩进,所以必要的时候应当自己清除缩进。这符合通常的习惯。第一行之后的第一个非空行决定了整个文档的缩进格式。(我们不用第一行是因为它通常紧靠着起始的引号,缩进格式显示的不清楚。)留白“相当于”是字符串的起始缩进。每一行都不应该有缩进,如果有缩进的话,所有的留白都应该清除掉。留白的长度应当等于扩展制表符的宽度(通常是8个空格)。 

Here is an example of a multi-line docstring: 

以下是一个多行文档字符串的示例: 


>>> def my_function():
...     """Do nothing, but document it.
...
...     No, really, it doesn't do anything.
...     """
...     pass
...
>>> print my_function.__doc__
Do nothing, but document it.

    No, really, it doesn't do anything.

5 数据结构 Data Structures

This chapter describes some things you’ve learned about already in more detail, and adds some new things as well.

本章节深入讲述一些你已经学习过的东西,并且还加入了新的内容。

5.1 深入链表 More on Lists

The list data type has some more methods. Here are all of the methods of list objects:

链表类型有很多方法,这里是链表类型的所有方法:

append( x)

Add an item to the end of the list; equivalent to a[len(a):] = [x].
把一个元素添加到链表的结尾,相当于 a[len(a):] = [x]

extend( L)

Extend the list by appending all the items in the given list; equivalent to a[len(a):] = L.
通过添加指定链表的所有元素来扩充链表,相当于 a[len(a):] = L。

insert( i, x)

Insert an item at a given position. The first argument is the index of the element before which to insert, so a.insert(0, x) inserts at the front of the list, and a.insert(len(a), x) is equivalent to a.append(x).
在指定位置插入一个元素。第一个参数是准备插入到其前面的那个元素的索引,例如a.insert(0, x) 会插入到整个链表之前,而a.insert(len(a), x) 相当于 a.append(x)。

remove( x)

Remove the first item from the list whose value is x. It is an error if there is no such item.
删除链表中值为x的第一个元素。如果没有这样的元素,就会返回一个错误。

pop( [i])

Remove the item at the given position in the list, and return it. If no index is specified, a.pop() returns the last item in the list. The item is also removed from the list. (The square brackets around the i in the method signature denote that the parameter is optional, not that you should type square brackets at that position. You will see this notation frequently in the Python Library Reference.)
从链表的指定位置删除元素,并将其返回。如果没有指定索引,a.pop()返回最后一个元素元素随即从链表中被删除。(方法中i两边的方括号表示这个参数是可选的,而不是要求你输入一对方括号,你会经常在Python 库参考手册中遇到这样的标记。)

index( x)

Return the index in the list of the first item whose value is x. It is an error if there is no such item.
返回链表中第一个值为x的元素的索引。如果没有匹配的元素就会返回一个错误。

count( x)

Return the number of times x appears in the list.
返回x在链表中出现的次数。

sort( )

Sort the items of the list, in place.
对链表中的元素进行适当的排序。

reverse( )

Reverse the elements of the list, in place.
倒排链表中的元素。

An example that uses most of the list methods:

下面这个示例演示了链表的大部分方法:

a = [66.6, 333, 333, 1, 1234.5]
print a.count(333), a.count(66.6), a.count(‘x’)
2 1 0
a.insert(2, -1)
a.append(333)
a
[66.6, 333, -1, 333, 1, 1234.5, 333]
a.index(333)
1
a.remove(333)
a
[66.6, -1, 333, 1, 1234.5, 333]
a.reverse()
a
[333, 1234.5, 1, 333, -1, 66.6]
a.sort()
a
[-1, 1, 66.6, 333, 333, 1234.5]

5.1.1 把链表当作堆栈使用 Using Lists as Stacks

The list methods make it very easy to use a list as a stack, where the last element added is the first element retrieved (``last-in, first-out’'). To add an item to the top of the stack, use append(). To retrieve an item from the top of the stack, use pop() without an explicit index. For example:

链表方法使得链表可以很方便的做为一个堆栈来使用,堆栈作为特定的数据结构,最先进入的元素最后一个被释放(后进先出)。用append() 方法可以把一个元素添加到堆栈顶。用不指定索引的pop() 方法可以把一个元素从堆栈顶释放出来。例如:

stack = [3, 4, 5]
stack.append(6)
stack.append(7)
stack
[3, 4, 5, 6, 7]
stack.pop()
7
>>> stack
[3, 4, 5, 6]
stack.pop()
6
stack.pop()
5
stack
[3, 4]

5.1.2 把链表当作队列使用 Using Lists as Queues

You can also use a list conveniently as a queue, where the first element added is the first element retrieved (``first-in, first-out’'). To add an item to the back of the queue, use append(). To retrieve an item from the front of the queue, use pop() with 0 as the index. For example:

你也可以把链表当做队列使用,队列作为特定的数据结构,最先进入的元素最先释放(先进先出)。使用 append()方法可以把元素添加到队列最后,以0为参数调用 pop() 方法可以把最先进入的元素释放出来。例如:

queue = [“Eric”, “John”, “Michael”]
queue.append(“Terry”) # Terry arrives
queue.append(“Graham”) # Graham arrives
queue.pop(0)
‘Eric’
queue.pop(0)
‘John’
queue
[‘Michael’, ‘Terry’, ‘Graham’]

5.1.3 函数化编程工具 Functional Programming Tools

There are three built-in functions that are very useful when used with lists: filter(), map(), and reduce().

对于链表来讲,有三个内置函数非常有用==:filter(), map(), 和 reduce()。 ==

“filter(function, sequence)” returns a sequence (of the same type, if possible) consisting of those items from the sequence for which function(item) is true. For example, to compute some primes:

"filter(function, sequence)"返回一个序列(sequence),包括了给定序列中所有调用function(item)后返回值为true的元素。(如果可能的话,会返回相同的类型)。例如,以下程序可以计算部分素数:

def f(x): return x % 2 != 0 and x % 3 != 0

>>> filter(f, range(2, 25))
[5, 7, 11, 13, 17, 19, 23]

“map(function, sequence)” calls function(item) for each of the sequence’s items and returns a list of the return values. For example, to compute some cubes:

“map(function, sequence)” 为每一个元素依次调用function(item)并将返回值组成一个链表返回。例如,以下程序计算立方:

def cube(x): return xxx

map(cube, range(1, 11))
[1, 8, 27, 64, 125, 216, 343, 512, 729, 1000]

More than one sequence may be passed; the function must then have as many arguments as there are sequences and is called with the corresponding item from each sequence (or None if some sequence is shorter than another). For example:

可以传入多个序列,函数也必须要有对应数量的参数,执行时会依次用各序列上对应的元素来调用函数(如果某些序列比其它的短,就用None来代替)。如果把None做为一个函数传入,则直接返回参数做为替代。例如:

seq = range(8)
def add(x, y): return x+y

map(add, seq, seq)
[0, 2, 4, 6, 8, 10, 12, 14]

“reduce(func, sequence)” returns a single value constructed by calling the binary function func on the first two items of the sequence, then on the result and the next item, and so on. For example, to compute the sum of the numbers 1 through 10:

“reduce(func, sequence)” 返回一个单值,它是这样构造的:首先以序列的前两个元素调用函数,再以返回值和第三个参数调用,依次执行下去。例如,以下程序计算1到10的整数之和:

def add(x,y): return x+y

reduce(add, range(1, 11))
55

If there’s only one item in the sequence, its value is returned; if the sequence is empty, an exception is raised.

==如果序列中只有一个元素,就返回它,如果序列是空的,就抛出一个异常。

A third argument can be passed to indicate the starting value. In this case the starting value is returned for an empty sequence, and the function is first applied to the starting value and the first sequence item, then to the result and the next item, and so on. For example,

可以传入第三个参数做为初始值。如果序列是空的,就返回初始值,否则函数会先接收初始值和序列的第一个元素,然后是返回值和下一个元素,依此类推。例如: ==

def sum(seq):
… def add(x,y): return x+y
… return reduce(add, seq, 0)

sum(range(1, 11))
55
sum([])
0

Don’t use this example’s definition of sum(): since summing numbers is such a common need, a built-in function sum(sequence) is already provided, and works exactly like this. New in version 2.3.

不要像示例中这样定义sum():因为合计数值是一个通用的需求,在2.3版中,提供了内置的sum(sequence) 函数。 New in version 2.3.

5.1.4 链表推导式 List Comprehensions

List comprehensions provide a concise way to create lists without resorting to use of map(), filter() and/or lambda. The resulting list definition tends often to be clearer than lists built using those constructs. Each list comprehension consists of an expression followed by a for clause, then zero or more for or if clauses. The result will be a list resulting from evaluating the expression in the context of the for and if clauses which follow it. If the expression would evaluate to a tuple, it must be parenthesized.

链表推导式提供了一个创建链表的简单途径,无需使用map(), filter() 以及 lambda。返回链表的定义通常要比创建这些链表更清晰。每一个链表推导式包括在一个for 语句之后的表达式,零或多个 for或 if 语句。返回值是由 for 或 if子句之后的表达式得到的元素组成的链表。如果想要得到一个元组,必须要加上括号。

for…in…附加条件if…

freshfruit = [’ banana’, ’ loganberry ', 'passion fruit ']
[weapon.strip() for weapon in freshfruit]
[‘banana’, ‘loganberry’, ‘passion fruit’]
vec = [2, 4, 6]
[3x for x in vec]
[6, 12, 18]
[3
x for x in vec if x > 3]
[12, 18]
[3x for x in vec if x < 2]
[]
[[x,x2] for x in vec]
[[2, 4], [4, 16], [6, 36]]
[x, x
2 for x in vec] # error - parens required for tuples
File “”, line 1, in ?
[x, x2 for x in vec]
^
SyntaxError: invalid syntax
[(x, x
2) for x in vec]
[(2, 4), (4, 16), (6, 36)]
vec1 = [2, 4, 6]
vec2 = [4, 3, -9]
[x
y for x in vec1 for y in vec2]
[8, 6, -18, 16, 12, -36, 24, 18, -54]
[x+y for x in vec1 for y in vec2]
[6, 5, -7, 8, 7, -5, 10, 9, -3]
[vec1[i]*vec2[i] for i in range(len(vec1))]
[8, 12, -54]

List comprehensions are much more flexible than map() and can be applied to functions with more than one argument and to nested functions:

链表推导式比 map()更复杂,可调用多个参数和嵌套函数。

[str(round(355/113.0, i)) for i in range(1,6)]
[‘3.1’, ‘3.14’, ‘3.142’, ‘3.1416’, ‘3.14159’]

5.2 del 语句

There is a way to remove an item from a list given its index instead of its value: the del statement. This can also be used to remove slices from a list (which we did earlier by assignment of an empty list to the slice). For example:

有一个方法可从链表中删除指定索引的元素:del 语句。这个方法也可以从链表中删除切片(之前我们是把一个空链表赋给切片)。例如:

a = [-1, 1, 66.6, 333, 333, 1234.5]
del a[0]
a
[1, 66.6, 333, 333, 1234.5]
del a[2:4]
a
[1, 66.6, 1234.5]

del can also be used to delete entire variables:

del 也可以用于删除整个变量:

del a

Referencing the name a hereafter is an error (at least until another value is assigned to it). We’ll find other uses for del later.

此后再引用这个名字会发生错误(至少要到给它赋另一个值为止)。后面我们还会发现del的其它用法。

5.3 元组(Tuples)和序列(Sequences )Tuples and Sequences

We saw that lists and strings have many common properties, such as indexing and slicing operations. They are two examples of sequence data types. Since Python is an evolving language, other sequence data types may be added. There is also another standard sequence data type: the tuple.

我们知道链表和字符串有很多通用的属性,例如索引和切片操作。它们是序列类型中的两种。因为Python是一个在不停进化的语言,也可能会加入其它的

t = 12345, 54321, ‘hello!’
t[0]
12345
t
(12345, 54321, ‘hello!’)

Tuples may be nested:

… u = t, (1, 2, 3, 4, 5)

u
((12345, 54321, ‘hello!’), (1, 2, 3, 4, 5))

As you see, on output tuples are alway enclosed in parentheses, so that nested tuples are interpreted correctly; they may be input with or without surrounding parentheses, although often parentheses are necessary anyway (if the tuple is part of a larger expression).

如你所见,元组在输出时总是有括号的,以便于正确表达嵌套结构。在输入时可能有或没有括号都可以,不过经常括号都是必须的(如果元组是一个更大的表达式的一部分)。

Tuples have many uses. For example: (x, y) coordinate pairs, employee records from a database, etc. Tuples, like strings, are immutable: it is not possible to assign to the individual items of a tuple (you can simulate much of the same effect with slicing and concatenation, though). It is also possible to create tuples which contain mutable objects, such as lists.

元组有很多用途。例如(x, y)坐标点,数据库中的员工记录等等。元组就像字符串,不可改变:不能给元组的一个独立的元素赋值(尽管你可以通过联接和切片来模仿)。也可以通过包含可变对象来创建元组,例如链表。

A special problem is the construction of tuples containing 0 or 1 items: the syntax has some extra quirks to accommodate these. Empty tuples are constructed by an empty pair of parentheses; a tuple with one item is constructed by following a value with a comma (it is not sufficient to enclose a single value in parentheses). Ugly, but effective. For example:

一个特殊的问题是构造包含零个或一个元素的元组:为了适应这种情况,语法上有一些额外的改变。一对空的括号可以创建空元组;要创建一个单元素元组可以在值后面跟一个逗号(在括号中放入一个单值是不够的)。丑陋,但是有效。例如:

empty = ()
singleton = ‘hello’, # <-- note trailing comma
len(empty)
0
len(singleton)
1
singleton
(‘hello’,)

The statement t = 12345, 54321, ‘hello!’ is an example of tuple packing: the values 12345, 54321 and ‘hello!’ are packed together in a tuple. The reverse operation is also possible:

==语句 t = 12345, 54321, ‘hello!’ 是元组封装(sequence packing)的一个例子:值 12345, 54321 和 ‘hello!’ 被封装进元组。其逆操作可能是这样:

x, y, z = t
==
This is called, appropriately enough, sequence unpacking. Sequence unpacking requires that the list of variables on the left have the same number of elements as the length of the sequence. Note that multiple assignment is really just a combination of tuple packing and sequence unpacking!

这个调用被称为序列拆封非常合适。序列拆封要求左侧的变量数目与序列的元素个数相同。要注意的是可变参数(multiple assignment )其实只是元组封装和序列拆封的一个结合!

There is a small bit of asymmetry here: packing multiple values always creates a tuple, and unpacking works for any sequence.

这里有一点不对称:封装多重参数通常会创建一个元组,而拆封操作可以作用于任何序列。

5.4 Dictionaries 字典

Another useful data type built into Python is the dictionary. Dictionaries are sometimes found in other languages as associative memories'' or associative arrays’'. Unlike sequences, which are indexed by a range of numbers, dictionaries are indexed by keys, which can be any immutable type; strings and numbers can always be keys. Tuples can be used as keys if they contain only strings, numbers, or tuples; if a tuple contains any mutable object either directly or indirectly, it cannot be used as a key. You can’t use lists as keys, since lists can be modified in place using their append() and extend() methods, as well as slice and indexed assignments.

另一个非常有用的Python内建数据类型是字典。字典在某些语言中可能称为“联合内存”(associative memories'')或“联合数组”(associative arrays’')。序列是以连续的整数为索引,与此不同的是,字典以关键字为索引,关键字可以是任意不可变类型,通常用字符串或数值。如果元组中只包含字符串和数字,它可以做为关键字,如果它直接或间接的包含了可变对象,就不能当做关键字。不能用链表做关键字,因为链表可以用它们的append() 和 extend()方法,或者用切片、或者通过检索变量来即时改变。

It is best to think of a dictionary as an unordered set of key: value pairs, with the requirement that the keys are unique (within one dictionary). A pair of braces creates an empty dictionary: {}. Placing a comma-separated list of key:value pairs within the braces adds initial key:value pairs to the dictionary; this is also the way dictionaries are written on output.

理解字典的最佳方式是把它看做无序的关键字:值 对(key:value pairs)集合,关键字必须是互不相同的(在同一个字典之内)。一对大括号创建一个空的字典:{}。初始化链表时,在大括号内放置一组逗号分隔的关键字:值对,这也是字典输出的方式。

The main operations on a dictionary are storing a value with some key and extracting the value given the key. It is also possible to delete a key:value pair with del. If you store using a key that is already in use, the old value associated with that key is forgotten. It is an error to extract a value using a non-existent key.

字典的主要操作是依据关键字来存储和析取值。也可以用 del来删除关键字:值对。如果你用一个已经存在的关键字存储值,以前为该关键字分配的值就会被遗忘。试图析取从一个不存在的关键字中读取值会导致错误。

The keys() method of a dictionary object returns a list of all the keys used in the dictionary, in random order (if you want it sorted, just apply the sort() method to the list of keys). To check whether a single key is in the dictionary, use the has_key() method of the dictionary.

字典的 keys()方法返回由所有关键字组成的链表,该链表的顺序不定(如果你需要它有序,只能调用关键字链表的sort() 方法)。使用字典的 has_key()方法可以检查字典中是否存在某一关键字。

Here is a small example using a dictionary:

这是一个关于字典应用的小示例:

==

tel = {‘jack’: 4098, ‘sape’: 4139}
tel[‘guido’] = 4127
tel
{‘sape’: 4139, ‘guido’: 4127, ‘jack’: 4098}
tel[‘jack’]
4098
del tel[‘sape’]
tel[‘irv’] = 4127
tel
{‘guido’: 4127, ‘irv’: 4127, ‘jack’: 4098}
tel.keys()
[‘guido’, ‘irv’, ‘jack’]
tel.has_key(‘guido’)
True==

The dict() constructor builds dictionaries directly from lists of key-value pairs stored as tuples. When the pairs form a pattern, list comprehensions can compactly specify the key-value list.

链表中存储关键字-值对元组的话,字典可以从中直接构造。关键字-值对来自一个模式时,可以用链表推导式简单的表达关键字-值链表。

dict([(‘sape’, 4139), (‘guido’, 4127), (‘jack’, 4098)])
{‘sape’: 4139, ‘jack’: 4098, ‘guido’: 4127}
>>> dict([(x, x**2) for x in range(2,7,2)]) # use a list comprehension
{2: 4, 4: 16, 6: 36}

5.5 循环技巧 Looping Techniques

When looping through dictionaries, the key and corresponding value can be retrieved at the same time using the iteritems() method.

在字典中循环时,关键字和对应的值可以使用 iteritems()方法同时解读出来。

knights = {‘gallahad’: ‘the pure’, ‘robin’: ‘the brave’}
for k, v in knights.iteritems():
… print k, v

gallahad the pure
robin the brave

When looping through a sequence, the position index and corresponding value can be retrieved at the same time using the enumerate() function.

在序列中循环时,索引位置和对应值可以使用enumerate()函数同时得到。

for i, v in enumerate([‘tic’, ‘tac’, ‘toe’]):
… print i, v


0 tic
1 tac
2 toe

To loop over two or more sequences at the same time, the entries can be paired with the zip() function.

同时循环两个或更多的序列,可以使用 zip() 整体解读。

questions = [‘name’, ‘quest’, ‘favorite color’]
answers = [‘lancelot’, ‘the holy grail’, ‘blue’]
>>> for q, a in zip(questions, answers):
… print ‘What is your %s? It is %s.’ % (q, a)

What is your name? It is lancelot.
What is your quest? It is the holy grail.
What is your favorite color? It is blue.

5.6 深入条件控制 More on Conditions

The conditions used in while and if statements above can contain other operators besides comparisons.

用于 while 和 if 语句的条件包括了比较之外的操作符。

The comparison operators in and not in check whether a value occurs (does not occur) in a sequence. The operators is and is not compare whether two objects are really the same object; this only matters for mutable objects like lists. All comparison operators have the same priority, which is lower than that of all numerical operators.

in 和 not in 比较操作符审核值是否在一个区间之内。操作符 is is not 和比较两个对象是否相同;这只和诸如链表这样的可变对象有关。所有的比较操作符具有相同的优先级,低于所有的数值操作。

Comparisons can be chained. For example, a < b == c tests whether a is less than b and moreover b equals c.

比较操作可以传递。例如 a < b == c 审核是否 a 小于 b 并 b 等于c。

Comparisons may be combined by the Boolean operators and and or, and the outcome of a comparison (or of any other Boolean expression) may be negated with not. These all have lower priorities than comparison operators again; between them, not has the highest priority, and or the lowest, so that A and not B or C is equivalent to (A and (not B)) or C. Of course, parentheses can be used to express the desired composition.

比较操作可以通过逻辑操作符 and 和 or 组合,比较的结果可以用 not 来取反义。这些操作符的优先级又低于比较操作符,在它们之中,not 具有最高的优先级, or 优先级最低,所以A and not B or C 等于 (A and (not B)) or C。当然,表达式可以用期望的方式表示。

The Boolean operators and and or are so-called short-circuit operators: their arguments are evaluated from left to right, and evaluation stops as soon as the outcome is determined. For example, if A and C are true but B is false, A and B and C does not evaluate the expression C. In general, the return value of a short-circuit operator, when used as a general value and not as a Boolean, is the last evaluated argument.

逻辑操作符 and 和 or 也称作短路操作符:它们的参数从左向右解析,一旦结果可以确定就停止。例如,如果 A 和 C 为真而 B 为假, A and B and C 不会解析 C。作用于一个普通的非逻辑值时,短路操作符的返回值通常是最后一个变量

It is possible to assign the result of a comparison or other Boolean expression to a variable. For example,

可以把比较或其它逻辑表达式的返回值赋给一个变量,例如:

string1, string2, string3 = ‘’, ‘Trondheim’, ‘Hammer Dance’
non_null = string1 or string2 or string3
non_null
‘Trondheim’

Note that in Python, unlike C, assignment cannot occur inside expressions. C programmers may grumble about this, but it avoids a common class of problems encountered in C programs: typing = in an expression when == was intended.

需要注意的是Python与C不同,在表达式内部不能赋值。C 程序员经常对此抱怨,不过它避免了一类在 C 程序中司空见惯的错误:想要在解析式中使 == 时误用了 = 操作符。

5.7 比较序列和其它类型 Comparing Sequences and Other Types

Sequence objects may be compared to other objects with the same sequence type. The comparison uses lexicographical ordering: first the first two items are compared, and if they differ this determines the outcome of the comparison; if they are equal, the next two items are compared, and so on, until either sequence is exhausted. If two items to be compared are themselves sequences of the same type, the lexicographical comparison is carried out recursively. If all items of two sequences compare equal, the sequences are considered equal. If one sequence is an initial sub-sequence of the other, the shorter sequence is the smaller (lesser) one. Lexicographical ordering for strings uses the ASCII ordering for individual characters. Some examples of comparisons between sequences with the same types:

序列对象可以与相同类型的其它对象比较。比较操作按 字典序 进行:首先比较前两个元素,如果不同,就决定了比较的结果;如果相同,就比较后两个元素,依此类推,直到所有序列都完成比较。如果两个元素本身就是同样类型的序列,就递归字典序比较。如果两个序列的所有子项都相等,就认为序列相等。如果一个序列是另一个序列的初始子序列,较短的一个序列就小于另一个。字符串的字典序按照单字符的 ASCII 顺序。下面是同类型序列之间比较的一些例子:

(1, 2, 3) < (1, 2, 4)
[1, 2, 3] < [1, 2, 4]
‘ABC’ < ‘C’ < ‘Pascal’ < ‘Python’
(1, 2, 3, 4) < (1, 2, 4)
(1, 2) < (1, 2, -1)
(1, 2, 3) == (1.0, 2.0, 3.0)
(1, 2, (‘aa’, ‘ab’)) < (1, 2, (‘abc’, ‘a’), 4)

Note that comparing objects of different types is legal. The outcome is deterministic but arbitrary: the types are ordered by their name. Thus, a list is always smaller than a string, a string is always smaller than a tuple, etc. Mixed numeric types are compared according to their numeric value, so 0 equals 0.0, etc.5.1

需要注意的是不同类型的对象比较是合法的。输出结果是确定而非任意的:类型按它们的名字排序。因而,一个链表(list)总是小于一个字符串(string),一个字符串(string)总是小于一个元组(tuple)等等。数值类型比较时会统一它们的数据类型,所以0等于0.0,等等。

Subsections 
6.1 深入模块 More on Modules 
6.1.1 模块搜索路径 The Module Search Path 
6.1.2 “编译”Python文件 ``Compiled'' Python files 
6.2 标准模块 Standard Modules 
6.3 dir() 函数 dir() Function 
6.4 包 Packages 
6.4.1 以 * 方式加载包 Importing * From a Package 
6.4.2 内置包(Intra-package)参考 Intra-package References 
6.4.3 多重路径中的包 Packages in Multiple Directories

6. 模块 Modules

If you quit from the Python interpreter and enter it again, the definitions you have made (functions and variables) are lost. Therefore, if you want to write a somewhat longer program, you are better off using a text editor to prepare the input for the interpreter and running it with that file as input instead. This is known as creating a script. As your program gets longer, you may want to split it into several files for easier maintenance. You may also want to use a handy function that you’ve written in several programs without copying its definition into each program.

如果你退出 Python 解释器重新进入,以前创建的一切定义(变量和函数)就全部丢失了。因此,如果你想写一些长久保存的程序,最好使用一个文本编辑器来编写程序,把保存好的文件输入解释器。我们称之为创建一个脚本。程序变得更长一些了,你可能为了方便维护而把它分离成几个文件。你也可能想要在几个程序中都使用一个常用的函数,但是不想把它的定义复制到每一个程序里。

To support this, Python has a way to put definitions in a file and use them in a script or in an interactive instance of the interpreter. Such a file is called a module; definitions from a module can be imported into other modules or into the main module (the collection of variables that you have access to in a script executed at the top level and in calculator mode).

为了满足这些需要,Python提供了一个方法可以从文件中获取定义,在脚本或者解释器的一个交互式实例中使用。这样的文件被称为模块;模块中的定义可以导入到另一个模块或主模块中(在脚本执行时可以调用的变量集位于最高级,并且处于计算器模式)

A module is a file containing Python definitions and statements. The file name is the module name with the suffix .py appended. Within a module, the module’s name (as a string) is available as the value of the global variable name. For instance, use your favorite text editor to create a file called fibo.py in the current directory with the following contents:

模块是包 括Python 定义和声明的文件。文件名就是模块名加上 .py 后缀。
模块的模块名(做为一个字符串)可以由全局变量 name 得到。例如,你可以用自己惯用的文件编辑器在当前目录下创建一个叫 fibo.py 的文件,录入如下内容:

Fibonacci numbers module

def fib(n): # write Fibonacci series up to n
a, b = 0, 1
while b < n:
print b,
a, b = b, a+b

def fib2(n): # return Fibonacci series up to n
result = []
a, b = 0, 1
while b < n:
result.append(b)
a, b = b, a+b
return result

Now enter the Python interpreter and import this module with the following command:

现在进入Python解释器,用如下命令导入这个模块:

import fibo

This does not enter the names of the functions defined in fibo directly in the current symbol table; it only enters the module name fibo there. Using the module name you can access the functions:

这样做不会直接把 fibo中的函数导入当前的语义表;它只是引入了模块名 fibo。你可以通过模块名按如下方式访问这个函数:

fibo.fib(1000)
1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987
fibo.fib2(100)
[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]
fibo.name
‘fibo’

If you intend to use a function often you can assign it to a local name:

如果你想要直接调用函数,通常可以给它赋一个本地名称:

fib = fibo.fib
fib(500)
1 1 2 3 5 8 13 21 34 55 89 144 233 377

6.1 深入模块 More on Modules

A module can contain executable statements as well as function definitions. These statements are intended to initialize the module. They are executed only the first time the module is imported somewhere.6.1

模块可以像函数定义一样包含执行语句。这些语句通常用于初始化模块。它们只在模块第一次导入时执行一次。6.2

Each module has its own private symbol table, which is used as the global symbol table by all functions defined in the module. Thus, the author of a module can use global variables in the module without worrying about accidental clashes with a user’s global variables.

==对应于定义模块中所有函数的全局语义表,每一个模块有自己的私有语义表。==因此,模块作者可以在模块中使用一些全局变量,不会因为与用户的全局变量冲突而引发错误。

On the other hand, if you know what you are doing you can touch a module’s global variables with the same notation used to refer to its functions, modname.itemname.

另一方面,如果你确定你需要这个,可以像引用模块中的函数一样获取模块中的全局变量,形如:modname.itemname。

Modules can import other modules. It is customary but not required to place all import statements at the beginning of a module (or script, for that matter). The imported module names are placed in the importing module’s global symbol table.

模块可以导入(import)其它模块。习惯上所有的 import语句都放在模块(或脚本,等等)的开头,但这并不是必须的。被导入的模块名入在本模块的全局语义表中。

There is a variant of the import statement that imports names from a module directly into the importing module’s symbol table. For example:

import 语句的一个变体直接从被导入的模块中导入命名到本模块的语义表中。例如:

==>>> from fibo import fib, fib2

fib(500)
1 1 2 3 5 8 13 21 34 55 89 144 233 377==

This does not introduce the module name from which the imports are taken in the local symbol table (so in the example, fibo is not defined).

这样不会从局域语义表中导入模块名(如上所示, fibo没有定义)。

There is even a variant to import all names that a module defines:

这样可以导入所有除了以下划线(_)开头的命名。

==>>> from fibo import *

fib(500)
1 1 2 3 5 8 13 21 34 55 89 144 233 377==

==This imports all names except those beginning with an underscore (_).

这样可以导入所有除了以下划线(_)开头的命名。 ==

6.1.1 模块搜索路径 The Module Search Path

When a module named spam is imported, the interpreter searches for a file named spam.py in the current directory, and then in the list of directories specified by the environment variable PYTHONPATH. This has the same syntax as the shell variable PATH, that is, a list of directory names. When PYTHONPATH is not set, or when the file is not found there, the search continues in an installation-dependent default path; on Unix, this is usually .:/usr/local/lib/python.

导入一个叫 spam 的模块时,解释器先在当前目录中搜索名为 spam.py 的文件,然后在环境变量 PYTHONPATH 表示的目录列表中搜索,然后是环境变量 PATH 中的路径列表。如果 PYTHONPATH 没有设置,或者文件没有找到,接下来搜索安装目录,在 Unix中,通常是 .:/usr/local/lib/python。

Actually, modules are searched in the list of directories given by the variable sys.path which is initialized from the directory containing the input script (or the current directory), PYTHONPATH and the installation-dependent default. This allows Python programs that know what they’re doing to modify or replace the module search path. Note that because the directory containing the script being run is on the search path, it is important that the script not have the same name as a standard module, or Python will attempt to load the script as a module when that module is imported. This will generally be an error. See section , ``Standard Modules,‘’ for more information.

实际上,解释器由 sys.path 变量指定的路径目录搜索模块,该变量初始化时默认包含了输入脚本(或者当前目录),PYTHONPATH 和安装目录。这样就允许Python程序(原文如此,programs;我猜想应该是“programer”,程序员--译者)了解如何修改或替换模块搜索目录。需要注意的是由于这些目录中包含有搜索路径中运行的脚本,所以这些脚本不应该和标准模块重名,否则在导入模块时Python会尝试把这些脚本当作模块来加载。这通常会引发一个错误。请参见6.2节“标准模块( )”以了解更多的信息。

6.1.2 “编译”Python文件 ``Compiled’’ Python files

As an important speed-up of the start-up time for short programs that use a lot of standard modules, if a file called spam.pyc exists in the directory where spam.py is found, this is assumed to contain an already-``byte-compiled’’ version of the module spam. The modification time of the version of spam.py used to create spam.pyc is recorded in spam.pyc, and the .pyc file is ignored if these don’t match.

对于引用了大量标准模块的短程序,有一个提高启动速度的重要方法,如果在 spam.py 所在的目录下存在一个名为 spam.pyc 的文件,它会被视为 spam 模块的预“编译”(``byte-compiled’’ ,二进制编译)版本。用于创建 spam.pyc 的这一版 spam.py 的修改时间记录在 spam.pyc 文件中,如果两者不匹配,.pyc 文件就被忽略。

Normally, you don’t need to do anything to create the spam.pyc file. Whenever spam.py is successfully compiled, an attempt is made to write the compiled version to spam.pyc. It is not an error if this attempt fails; if for any reason the file is not written completely, the resulting spam.pyc file will be recognized as invalid and thus ignored later. The contents of the spam.pyc file are platform independent, so a Python module directory can be shared by machines of different architectures.

通常你不需要为创建 spam.pyc 文件做任何工作。一旦 spam.py 成功编译,就会试图编译对应版本的 spam.pyc。如果有任何原因导致写入不成功,返回的 spam.pyc 文件就会视为无效,随后即被忽略。 spam.pyc 文件的内容是平台独立的,所以Python模块目录可以在不同架构的机器之间共享。

Some tips for experts:

部分高级技巧:

When the Python interpreter is invoked with the -O flag, optimized code is generated and stored in .pyo files. The optimizer currently doesn’t help much; it only removes assert statements. When -O is used, all bytecode is optimized; .pyc files are ignored and .py files are compiled to optimized bytecode.
以 -O 参数调用Python解释器时,会生成优化代码并保存在 .pyo 文件中。现在的优化器没有太多帮助;它只是删除了断言(assert )语句。使用 -O 参参数,所有的代码都会被优化;.pyc 文件被忽略, .py文件被编译为优化代码。

Passing two -O flags to the Python interpreter (-OO) will cause the bytecode compiler to perform optimizations that could in some rare cases result in malfunctioning programs. Currently only doc strings are removed from the bytecode, resulting in more compact .pyo files. Since some programs may rely on having these available, you should only use this option if you know what you’re doing.
向Python解释器传递两个 -O 参数(-OO)会执行完全优化的二进制优化编译,这偶尔会生成错误的程序。现在的优化器,只是从二进制代码中删除了 doc 符串,生成更为紧凑的 .pyo 文件。因为某些程序依赖于这些变量的可用性,你应该只在确定无误的场合使用这一选项。

A program doesn’t run any faster when it is read from a .pyc or .pyo file than when it is read from a .py file; the only thing that’s faster about .pyc or .pyo files is the speed with which they are loaded.
来自 .pyc 文件或 .pyo 文件中的程序不会比来自 .py 文件的运行更快; .pyc 或 .pyo 文件只是在它们加载的时候更快一些。

When a script is run by giving its name on the command line, the bytecode for the script is never written to a .pyc or .pyo file. Thus, the startup time of a script may be reduced by moving most of its code to a module and having a small bootstrap script that imports that module. It is also possible to name a .pyc or .pyo file directly on the command line.
通过脚本名在命令行运行脚本时,不会将为该脚本创建的二进制代码写入 .pyc 或.pyo 文件。当然,把脚本的主要代码移进一个模块里,然后用一个小的解构脚本导入这个模块,就可以提高脚本的启动速度。也可以直接在命令行中指定一个 .pyc 或 .pyo 文件。

It is possible to have a file called spam.pyc (or spam.pyo when -O is used) without a file spam.py for the same module. This can be used to distribute a library of Python code in a form that is moderately hard to reverse engineer.
对于同一个模块(这里指例程 spam.py --译者),可以只有 spam.pyc 文件(或者 spam.pyc ,在使用 -O 参数时)而没有 spam.py 文件。这样可以打包发布比较难于逆向工程的Python代码库。

The module compileall can create .pyc files (or .pyo files when -O is used) for all modules in a directory.
compileall 模块 可以为指定目录中的所有模块创建 .pyc 文件(或者使用 .pyo 参数创建.pyo文件)。

6.2 标准模块 Standard Modules

Python comes with a library of standard modules, described in a separate document, the Python Library Reference (``Library Reference’’ hereafter). Some modules are built into the interpreter; these provide access to operations that are not part of the core of the language but are nevertheless built in, either for efficiency or to provide access to operating system primitives such as system calls. The set of such modules is a configuration option which also depends on the underlying platform For example, the amoeba module is only provided on systems that somehow support Amoeba primitives. One particular module deserves some attention: sys, which is built into every Python interpreter. The variables sys.ps1 and sys.ps2 define the strings used as primary and secondary prompts:

Python带有一个标准模块库,并发布有独立的文档,名为 Python 库参考手册 (此后称其为“库参考手册”)。有一些模块内置于解释器之中,这些操作的访问接口不是语言内核的一部分,但是已经内置于解释器了。这既是为了提高效率,也是为了给系统调用等操作系统原生访问提供接口。这类模块集合是一个依赖于底层平台的配置选项。例如,amoeba 模块只提供对 Amoeba 原生系统的支持。有一个具体的模块值得注意:sys ,这个模块内置于所有的Python解释器。变量 sys.ps1 和 sys.ps2定义了主提示符和副助提示符字符串:

import sys
sys.ps1
'>>> ’
sys.ps2
'… ’
sys.ps1 = 'C> ’
C> print ‘Yuck!’
Yuck!
C>

These two variables are only defined if the interpreter is in interactive mode.

这两个变量只在解释器的交互模式下有意义。

The variable sys.path is a list of strings that determine the interpreter’s search path for modules. It is initialized to a default path taken from the environment variable PYTHONPATH, or from a built-in default if PYTHONPATH is not set. You can modify it using standard list operations:

变量 sys.path 是解释器模块搜索路径的字符串列表。它由环境变量 PYTHONPATH 初始化,如果没有设定 PYTHONPATH ,就由内置的默认值初始化。你可以用标准的字符串操作修改它:

import sys
sys.path.append(‘/ufs/guido/lib/python’)

6.3 dir() 函数 dir() Function

The built-in function dir() is used to find out which names a module defines. It returns a sorted list of strings:

内置函数 dir() 用于按模块名搜索模块定义,它返回一个字符串类型的存储列表:

import fibo, sys
dir(fibo)
[‘name’, ‘fib’, ‘fib2’]
dir(sys)
[‘displayhook’, ‘doc’, ‘excepthook’, ‘name’, ‘stderr’,
stdin’, ‘stdout’, ‘_getframe’, ‘api_version’, ‘argv’,
‘builtin_module_names’, ‘byteorder’, ‘callstats’, ‘copyright’,
‘displayhook’, ‘exc_clear’, ‘exc_info’, ‘exc_type’, ‘excepthook’,
‘exec_prefix’, ‘executable’, ‘exit’, ‘getdefaultencoding’, ‘getdlopenflags’,
‘getrecursionlimit’, ‘getrefcount’, ‘hexversion’, ‘maxint’, ‘maxunicode’,
‘meta_path’, ‘modules’, ‘path’, ‘path_hooks’, ‘path_importer_cache’,
‘platform’, ‘prefix’, ‘ps1’, ‘ps2’, ‘setcheckinterval’, ‘setdlopenflags’,
‘setprofile’, ‘setrecursionlimit’, ‘settrace’, ‘stderr’, ‘stdin’, ‘stdout’,
‘version’, ‘version_info’, ‘warnoptions’]

Without arguments, dir() lists the names you have defined currently:

无参数调用时, dir() 函数返回当前定义的命名:

a = [1, 2, 3, 4, 5]
import fibo, sys
fib = fibo.fib
dir()
[‘name’, ‘a’, ‘fib’, ‘fibo’, ‘sys’]

Note that it lists all types of names: variables, modules, functions, etc.

该列表列出了所有类型的名称:变量,模块,函数,等等:

dir() does not list the names of built-in functions and variables. If you want a list of those, they are defined in the standard module builtin:

dir() 不会列出内置函数和变量名。如果你想列出这些内容,它们在标准模块 __builtin__中定义:

import builtin
dir(builtin)
[‘ArithmeticError’, ‘AssertionError’, ‘AttributeError’,
‘DeprecationWarning’, ‘EOFError’, ‘Ellipsis’, ‘EnvironmentError’,
‘Exception’, ‘False’, ‘FloatingPointError’, ‘IOError’, ‘ImportError’,
‘IndentationError’, ‘IndexError’, ‘KeyError’, ‘KeyboardInterrupt’,
‘LookupError’, ‘MemoryError’, ‘NameError’, ‘None’, ‘NotImplemented’,
‘NotImplementedError’, ‘OSError’, ‘OverflowError’, ‘OverflowWarning’,
‘PendingDeprecationWarning’, ‘ReferenceError’,
‘RuntimeError’, ‘RuntimeWarning’, ‘StandardError’, ‘StopIteration’,
‘SyntaxError’, ‘SyntaxWarning’, ‘SystemError’, ‘SystemExit’, ‘TabError’,
‘True’, ‘TypeError’, ‘UnboundLocalError’, ‘UnicodeError’, ‘UserWarning’,
‘ValueError’, ‘Warning’, ‘ZeroDivisionError’, ‘debug’, ‘doc’,
import’, ‘name’, ‘abs’, ‘apply’, ‘bool’, ‘buffer’,
‘callable’, ‘chr’, ‘classmethod’, ‘cmp’, ‘coerce’, ‘compile’, ‘complex’,
‘copyright’, ‘credits’, ‘delattr’, ‘dict’, ‘dir’, ‘divmod’,
‘enumerate’, ‘eval’, ‘execfile’, ‘exit’, ‘file’, ‘filter’, ‘float’,
‘getattr’, ‘globals’, ‘hasattr’, ‘hash’, ‘help’, ‘hex’, ‘id’,
‘input’, ‘int’, ‘intern’, ‘isinstance’, ‘issubclass’, ‘iter’,
‘len’, ‘license’, ‘list’, ‘locals’, ‘long’, ‘map’, ‘max’, ‘min’,
‘object’, ‘oct’, ‘open’, ‘ord’, ‘pow’, ‘property’, ‘quit’,
‘range’, ‘raw_input’, ‘reduce’, ‘reload’, ‘repr’, ‘round’,
‘setattr’, ‘slice’, ‘staticmethod’, ‘str’, ‘string’, ‘sum’, ‘super’,
‘tuple’, ‘type’, ‘unichr’, ‘unicode’, ‘vars’, ‘xrange’, ‘zip’]

6.4 包 Packages

Packages are a way of structuring Python’s module namespace by using ``dotted module names’'. For example, the module name A.B designates a submodule named “B” in a package named “A”. Just like the use of modules saves the authors of different modules from having to worry about each other’s global variable names, the use of dotted module names saves the authors of multi-module packages like NumPy or the Python Imaging Library from having to worry about each other’s module names.

包通常是使用用“圆点模块名”的结构化模块命名空间。例如,名为 A.B 的模块表示了名为 “B” 的包中名为 “A” 的子模块。正如同用模块来保存不同的模块架构可以避免全局变量之间的相互冲突,使用圆点模块名保存像 NumPy 或 Python Imaging Library 之类的不同类库架构可以避免模块之间的命名冲突。

Suppose you want to design a collection of modules (a ``package’') for the uniform handling of sound files and sound data. There are many different sound file formats (usually recognized by their extension, for example: .wav, .aiff, .au), so you may need to create and maintain a growing collection of modules for the conversion between the various file formats. There are also many different operations you might want to perform on sound data (such as mixing, adding echo, applying an equalizer function, creating an artificial stereo effect), so in addition you will be writing a never-ending stream of modules to perform these operations. Here’s a possible structure for your package (expressed in terms of a hierarchical filesystem):

假设你现在想要设计一个模块集(一个“包”)来统一处理声音文件和声音数据。存在几种不同的声音格式(通常由它们的扩展名来标识,例如:.wav , .aiff , .au) ),于是,为了在不同类型的文件格式之间转换,你需要维护一个不断增长的包集合。可能你还想要对声音数据做很多不同的操作(例如混音,添加回声,应用平衡功能,创建一个人造效果),所以你要加入一个无限流模块来执行这些操作。你的包可能会是这个样子(通过分级的文件体系来进行分组):

Sound/ Top-level package
init.py Initialize the sound package
Formats/ Subpackage for file format conversions
init.py
wavread.py
wavwrite.py
aiffread.py
aiffwrite.py
auread.py
auwrite.py

Effects/ Subpackage for sound effects
init.py
echo.py
surround.py
reverse.py

Filters/ Subpackage for filters
init.py
equalizer.py
vocoder.py
karaoke.py

When importing the package, Python searches through the directories on sys.path looking for the package subdirectory.

导入模块时,Python通过 sys.path 中的目录列表来搜索存放包的子目录。

The init.py files are required to make Python treat the directories as containing packages; this is done to prevent directories with a common name, such as “string”, from unintentionally hiding valid modules that occur later on the module search path. In the simplest case, init.py can just be an empty file, but it can also execute initialization code for the package or set the all variable, described later.

必须要有一个 init.py 文件的存在,才能使Python视该目录为一个包;这是为了防止某些目录使用了"string" 这样的通用名而无意中在随后的模块搜索路径中覆盖了正确的模块。最简单的情况下,init.py 可以只是一个空文件,不过它也可能包含了包的初始化代码,或者设置了 all 变量,后面会有相关介绍。

Users of the package can import individual modules from the package, for example:

包用户可以从包中导入合法的模块,例如:

import Sound.Effects.echo

This loads the submodule Sound.Effects.echo. It must be referenced with its full name.

这样就导入了 Sound.Effects.echo 子模块。它必需通过完整的名称来引用。

Sound.Effects.echo.echofilter(input, output, delay=0.7, atten=4)

An alternative way of importing the submodule is:

导入包时有一个可以选择的方式:

from Sound.Effects import echo

This also loads the submodule echo, and makes it available without its package prefix, so it can be used as follows:

这样就加载了 echo 子模块,并且使得它在没有包前缀的情况下也可以使用,所以它可以如下方式调用:

echo.echofilter(input, output, delay=0.7, atten=4)

Yet another variation is to import the desired function or variable directly:

还有另一种变体用于直接导入函数或变量:

from Sound.Effects.echo import echofilter

Again, this loads the submodule echo, but this makes its function echofilter() directly available:

这样就又一次加载了 echo 子模块,但这样就可以直接调用它的 echofilter() 函数:

echofilter(input, output, delay=0.7, atten=4)

Note that when using from package import item, the item can be either a submodule (or subpackage) of the package, or some other name defined in the package, like a function, class or variable. The import statement first tests whether the item is defined in the package; if not, it assumes it is a module and attempts to load it. If it fails to find it, an ImportError exception is raised.

需要注意的是使用 from package import item 方式导入包时,这个子项(item)既可以是包中的一个子模块(或一个子包),也可以是包中定义的其它命名,像函数、类或变量。import 语句首先核对是否包中有这个子项,如果没有,它假定这是一个模块,并尝试加载它。如果没有找到它,会引发一个 ImportError 异常。

Contrarily, when using syntax like import item.subitem.subsubitem, each item except for the last must be a package; the last item can be a module or a package but can’t be a class or function or variable defined in the previous item.

相反,使用类似import item.subitem.subsubitem 这样的语法时,这些子项必须是包,最后的子项可以是包或模块,但不能是前面子项中定义的类、函数或变量。

6.4.1 以 * 方式加载包 Importing * From a Package

Now what happens when the user writes from Sound.Effects import *? Ideally, one would hope that this somehow goes out to the filesystem, finds which submodules are present in the package, and imports them all. Unfortunately, this operation does not work very well on Mac and Windows platforms, where the filesystem does not always have accurate information about the case of a filename! On these platforms, there is no guaranteed way to know whether a file ECHO.PY should be imported as a module echo, Echo or ECHO. (For example, Windows 95 has the annoying practice of showing all file names with a capitalized first letter.) The DOS 8+3 filename restriction adds another interesting problem for long module names.

==那么当用户写下 from Sound.Effects import * 时会发生什么事?理想中,总是希望在文件系统中找出包中所有的子模块,然后导入它们。不幸的是,这个操作在 Mac 和 Windows 平台上工作的并不太好,这些文件系统的文件大小写并不敏感!==在这些平台上没有什么方法可以确保一个叫ECHO.PY 的文件应该导入为模块 echo 、 Echo 或 ECHO 。(例如,Windows 95有一个讨厌的习惯,它会把所有的文件名都显示为首字母大写的风格。)DOS 8+3文件名限制又给长文件名模块带来了另一个有趣的问题。

The only solution is for the package author to provide an explicit index of the package. The import statement uses the following convention: if a package’s init.py code defines a list named all, it is taken to be the list of module names that should be imported when from package import * is encountered. It is up to the package author to keep this list up-to-date when a new version of the package is released. Package authors may also decide not to support it, if they don’t see a use for importing * from their package. For example, the file Sounds/Effects/init.py could contain the following code:

对于包的作者来说唯一的解决方案就是给提供一个明确的包索引。import 语句按如下条件进行转换:执行 from package import * 时,如果包中的 init.py 代码定义了一个名为 all 的链表,就会按照链表中给出的模块名进行导入。新版本的包发布时作者可以任意更新这个链表。如果包作者不想 import * 的时候导入他们的包中所有模块,那么也可能会决定不支持它(import *)。例如, Sounds/Effects/init.py 这个文件可能包括如下代码:

all = [“echo”, “surround”, “reverse”]

This would mean that from Sound.Effects import * would import the three named submodules of the Sound package.

这意味着 from Sound.Effects import * 语句会从 Sound 包中导入以上三个已命名的子模块。

If all is not defined, the statement from Sound.Effects import * does not import all submodules from the package Sound.Effects into the current namespace; it only ensures that the package Sound.Effects has been imported (possibly running its initialization code, init.py) and then imports whatever names are defined in the package. This includes any names defined (and submodules explicitly loaded) by init.py. It also includes any submodules of the package that were explicitly loaded by previous import statements. Consider this code:

如果没有定义 all , from Sound.Effects import * 语句不会从 Sound.Effects 包中导入所有的子模块。Effects 导入到当前的命名空间,只能确定的是导入了 Sound.Effects 包(可能会运行 init.py 中的初始化代码)以及包中定义的所有命名会随之导入。这样就从 init.py 中导入了每一个命名(以及明确导入的子模块)。同样也包括了前述的import语句从包中明确导入的子模块,考虑以下代码:

import Sound.Effects.echo
import Sound.Effects.surround
from Sound.Effects import *

In this example, the echo and surround modules are imported in the current namespace because they are defined in the Sound.Effects package when the from…import statement is executed. (This also works when all is defined.)

在这个例子中,echo和surround模块导入了当前的命名空间,这是因为执行 from…import 语句时它们已经定义在 Sound.Effects 包中了(定义了 all 时也会同样工作)。

Note that in general the practice of importing * from a module or package is frowned upon, since it often causes poorly readable code. However, it is okay to use it to save typing in interactive sessions, and certain modules are designed to export only names that follow certain patterns.

==需要注意的是习惯上不主张从一个包或模块中用 import * 导入所有模块,因为这样的通常意味着可读性会很差。然而,在交互会话中这样做可以减少输入,相对来说确定的模块被设计成只导出确定的模式中命名的那一部分。 ==

Remember, there is nothing wrong with using from Package import specific_submodule! In fact, this is the recommended notation unless the importing module needs to use submodules with the same name from different packages.

记住, from Package import specific_submodule 没有错误!事实上,除非导入的模块需要使用其它包中的同名子模块,否则这是受到推荐的写法。

6.4.2 内置包(Intra-package)参考 Intra-package References

The submodules often need to refer to each other. For example, the surround module might use the echo module. In fact, such references are so common that the import statement first looks in the containing package before looking in the standard module search path. Thus, the surround module can simply use import echo or from echo import echofilter. If the imported module is not found in the current package (the package of which the current module is a submodule), the import statement looks for a top-level module with the given name.

子模块之间经常需要互相引用。例如,surround 模块可能会引用 echo 模块。事实上,这样的引用如此普遍,以致于 import 语句会先搜索包内部,然后才是标准模块搜索路径。因此 surround 模块可以简单的调用 import echo 或者 from echo import echofilter 。如果没有在当前的包中发现要导入的模块,import 语句会依据指定名寻找一个顶级模块。

When packages are structured into subpackages (as with the Sound package in the example), there’s no shortcut to refer to submodules of sibling packages - the full name of the subpackage must be used. For example, if the module Sound.Filters.vocoder needs to use the echo module in the Sound.Effects package, it can use from Sound.Effects import echo.

如果包中使用了子包结构(就像示例中的 Sound 包),不存在什么从邻近的包中引用子模块的便捷方法--必须使用子包的全名。例如,如果 Sound.Filters.vocoder 包需要使用 Sound.Effects 包中的 echosa 模块,它可以使用 from Sound.Effects import echo 。

6.4.3 多重路径中的包 Packages in Multiple Directories

Packages support one more special attribute, path. This is initialized to be a list containing the name of the directory holding the package’s init.py before the code in that file is executed. This variable can be modified; doing so affects future searches for modules and subpackages contained in the package.

包支持一个更为特殊的变量, path 。 在包的 init.py 文件代码执行之前,该变量初始化一个目录名列表。该变量可以修改,它作用于包中的子包和模块的搜索功能。

While this feature is not often needed, it can be used to extend the set of modules found in a package.

这个功能可以用于扩展包中的模块集,不过它不常用。


Footnotes
… somewhere.6.1
In fact function definitions are also statements' that are executed’; the execution enters the function name in the module’s global symbol table.
…第一次导入时执行一次。6.2
事实上函数定义既是“声明”又是“可执行体”;执行体由函数在模块全局语义表中的命名导入。(In fact function definitions are also statements' that are executed’; the execution enters the function name in the module’s global symbol table. )

Subsections 
7.1 设计输出格式 Fancier Output Formatting 
7.2 读写文件 Reading and Writing Files 
7.2.1 文件对象(file object)的方法 Methods of File Objects 
7.2.2 pickle 模块 pickle Module

7. 输入和输出 Input and Output

There are several ways to present the output of a program; data can be printed in a human-readable form, or written to a file for future use. This chapter will discuss some of the possibilities.

有几种方法可以表现程序的输出结果;数据可以用可读的结构打印,也可以写入文件供以后使用。本章将会讨论几种可行的做法。

7.1 设计输出格式 Fancier Output Formatting

So far we’ve encountered two ways of writing values: expression statements and the print statement. (A third way is using the write() method of file objects; the standard output file can be referenced as sys.stdout. See the Library Reference for more information on this.)

我们有两种大相径庭的输出值方法:表达式语句和 print 语句。(第三种访求是使用文件对象的 write() 方法,标准文件输出可以参考 sys.stdout。详细内容参见库参考手册。)

Often you’ll want more control over the formatting of your output than simply printing space-separated values. There are two ways to format your output; the first way is to do all the string handling yourself; using string slicing and concatenation operations you can create any lay-out you can imagine. The standard module string contains some useful operations for padding strings to a given column width; these will be discussed shortly. The second way is to use the % operator with a string as the left argument. The % operator interprets the left argument much like a sprintf()-style format string to be applied to the right argument, and returns the string resulting from this formatting operation.

可能你经常想要对输出格式做一些比简单的打印空格分隔符更为复杂的控制。有两种方法可以格式化输出。第一种是由你来控制整个字符串,使用字符切片和联接操作就可以创建出任何你想要的输出形式。标准模块 string 包括了一些操作,将字符串填充入给定列时,这些操作很有用。随后我们会讨论这部分内容。第二种方法是使用 % 操作符,以某个字符串做为其左参数。 % 操作符将左参数解释为类似于 sprintf() 风格的格式字符串,并作用于右参数,从该操作中返回格式化的字符串。

One question remains, of course: how do you convert values to strings? Luckily, Python has ways to convert any value to a string: pass it to the repr() or str() functions. Reverse quotes (``) are equivalent to repr(), but their use is discouraged.

当然,还有一个问题,如何将(不同的)值转化为字符串?很幸运,Python总是把任意值传入 repr() 或 str() 函数,转为字符串。相对而言引号 (``)等价于repr(),不过不提倡这样用。

The str() function is meant to return representations of values which are fairly human-readable, while repr() is meant to generate representations which can be read by the interpreter (or will force a SyntaxError if there is not equivalent syntax). For objects which don’t have a particular representation for human consumption, str() will return the same value as repr(). Many values, such as numbers or structures like lists and dictionaries, have the same representation using either function. Strings and floating point numbers, in particular, have two distinct representations.

函数 str() 用于将值转化为适于人阅读的形式,而 repr() 转化为供解释器读取的形式(如果没有等价的语法,则会发生 SyntaxError 异常) 某对象没有适于人阅读的解释形式的话, str() 会返回与 repr() 等同的值。很多类型,诸如数值或链表、字典这样的结构,针对各函数都有着统一的解读方式。字符串和浮点数,有着独特的解读方式。

Some examples:

s = ‘Hello, world.’
str(s)
‘Hello, world.’
repr(s)
“‘Hello, world.’”
str(0.1)
‘0.1’
repr(0.1)
‘0.10000000000000001’
x = 10 * 3.25
y = 200 * 200
s = 'The value of x is ’ + repr(x) + ', and y is ’ + repr(y) + ‘…’
print s
The value of x is 32.5, and y is 40000…

The repr() of a string adds string quotes and backslashes:

… hello = ‘hello, world\n’

hellos = repr(hello)
print hellos
‘hello, world\n’

The argument to repr() may be any Python object:

… repr((x, y, (‘spam’, ‘eggs’)))
“(32.5, 40000, (‘spam’, ‘eggs’))”

reverse quotes are convenient in interactive sessions:

x, y, ('spam', 'eggs')
“(32.5, 40000, (‘spam’, ‘eggs’))”

Here are two ways to write a table of squares and cubes:

以下两种方法可以输出平方和立方表:

for x in range(1, 11):
… print repr(x).rjust(2), repr(xx).rjust(3),
… # Note trailing comma on previous line
… print repr(x
xx).rjust(4)

1 1 1
2 4 8
3 9 27
4 16 64
5 25 125
6 36 216
7 49 343
8 64 512
9 81 729
10 100 1000
for x in range(1,11):
… print ‘%2d %3d %4d’ % (x, x
x, xxx)

1 1 1
2 4 8
3 9 27
4 16 64
5 25 125
6 36 216
7 49 343
8 64 512
9 81 729
10 100 1000

(Note that one space between each column was added by the way print works: it always adds spaces between its arguments.)

(需要注意的是使用 print 方法时每两列之间有一个空格:它总是在参数之间加一个空格。)

This example demonstrates the rjust() method of string objects, which right-justifies a string in a field of a given width by padding it with spaces on the left. There are similar methods ljust() and center(). These methods do not write anything, they just return a new string. If the input string is too long, they don’t truncate it, but return it unchanged; this will mess up your column lay-out but that’s usually better than the alternative, which would be lying about a value. (If you really want truncation you can always add a slice operation, as in “x.ljust( n)[:n]”.)

以上是一个 rjust() 函数的演示,这个函数把字符串输出到一列,并通过向左侧填充空格来使其右对齐。类似的函数还有 ljust() 和 center()。这些函数只是输出新的字符串,并不改变什么。如果输出的字符串太长,它们也不会截断它,而是原样输出,这会使你的输出格式变得混乱,不过总强过另一种选择(截断字符串),因为那样会产生错误的输出值。(如果你确实需要截断它,可以使用切片操作,例如:" “x.ljust( n)[:n]”。)

There is another method, zfill(), which pads a numeric string on the left with zeros. It understands about plus and minus signs:

还有一个函数, zfill() 它用于向数值的字符串表达左侧填充0。该函数可以正确理解正负号:

‘12’.zfill(5)
‘00012’
‘-3.14’.zfill(7)
‘-003.14’
‘3.14159265359’.zfill(5)
‘3.14159265359’

Using the % operator looks like this:

可以如下这样使用 % 操作符:

import math
print ‘The value of PI is approximately %5.3f.’ % math.pi
The value of PI is approximately 3.142.

If there is more than one format in the string, you need to pass a tuple as right operand, as in this example:

如果有超过一个的字符串要格式化为一体,就需要将它们传入一个元组做为右值,如下所示:

>>> table = {'Sjoerd': 4127, 'Jack': 4098, 'Dcab': 7678}
>>> for name, phone in table.items():
...     print '%-10s ==> %10d' % (name, phone)
...
Jack       ==>       4098
Dcab       ==>       7678
Sjoerd     ==>       4127

Most formats work exactly as in C and require that you pass the proper type; however, if you don’t you get an exception, not a core dump. The %s format is more relaxed: if the corresponding argument is not a string object, it is converted to string using the str() built-in function. Using * to pass the width or precision in as a separate (integer) argument is supported. The C formats %n and %p are not supported.

大多数类 C 的格式化操作都需要你传入适当的类型,不过如果你没有定义异常,也不会有什么从内核中主动的弹出来。(however, if you don’t you get an exception, not a core dump)使用 %s 格式会更轻松些:如果对应的参数不是字符串,它会通过内置的 str() 函数转化为字符串。Python支持用 * 作为一个隔离(整型的)参数来传递宽度或精度。Python 不支持 C的 %n 和 %p 操作符。

If you have a really long format string that you don’t want to split up, it would be nice if you could reference the variables to be formatted by name instead of by position. This can be done by using form %(name)format, as shown here:

如果可以逐点引用要格式化的变量名,就可以产生符合真实长度的格式化字符串,不会产生间隔。这一效果可以通过使用form %(name)format 结构来实现:

table = {‘Sjoerd’: 4127, ‘Jack’: 4098, ‘Dcab’: 8637678}
print ‘Jack: %(Jack)d; Sjoerd: %(Sjoerd)d; Dcab: %(Dcab)d’ % table
Jack: 4098; Sjoerd: 4127; Dcab: 8637678

This is particularly useful in combination with the new built-in vars() function, which returns a dictionary containing all local variables.

这个技巧在与新的内置函数 vars() 组合使用时非常有用,该函数返回一个包含所有局部变量的字典。

7.2 读写文件 Reading and Writing Files

open() returns a file object, and is most commonly used with two arguments: “open(filename, mode)”.

==open() 返回一个文件,通常的用法需要两个参数: “open(filename, mode)”。 ==

f=open(‘/tmp/workfile’, ‘w’)
print f

The first argument is a string containing the filename. The second argument is another string containing a few characters describing the way in which the file will be used. mode can be ‘r’ when the file will only be read, ‘w’ for only writing (an existing file with the same name will be erased), and ‘a’ opens the file for appending; any data written to the file is automatically added to the end. ‘r+’ opens the file for both reading and writing. The mode argument is optional; ‘r’ will be assumed if it’s omitted.

==第一个参数是一个标识文件名的字符串。第二个参数是由有限的字母组成的字符串,描述了文件将会被如何使用。可选的模式 有: ‘r’ ,此选项使文件只读; ‘w’,此选项使文件只写(对于同名文件,该操作使原有文件被覆盖); ‘a’ ,此选项以追加方式打开文件; ‘r+’ ,此选项以读写方式打开文件;如果没有指定,默认为 ‘r’ 模式。 ==

On Windows and the Macintosh, ‘b’ appended to the mode opens the file in binary mode, so there are also modes like ‘rb’, ‘wb’, and ‘r+b’. Windows makes a distinction between text and binary files; the end-of-line characters in text files are automatically altered slightly when data is read or written. This behind-the-scenes modification to file data is fine for ASCII text files, but it’ll corrupt binary data like that in JPEGs or .EXE files. Be very careful to use binary mode when reading and writing such files. (Note that the precise semantics of text mode on the Macintosh depends on the underlying C library being used.)

==在Windows 和 Macintosh平台上, 'b’模式以二进制方式打开文件,所以可能会有类似于 ‘rb’ ,‘wb’ , ‘r+b’ 等等模式组合。Windows平台上文本文件与二进制文件是有区别的,读写文本文件时,行尾会自动添加行结束符。这种后台操作方式对ASCII 文本文件没有什么问题,但是操作 JPEG 或 .EXE这样的二进制文件时就会产生破坏。在操作这些文件时一定要记得以二进制模式打开。(需要注意的是Mactiontosh 平台上的文本模式依赖于其使用的底层C库)。 ==

7.2.1 文件对象(file object)的方法 Methods of File Objects

The rest of the examples in this section will assume that a file object called f has already been created.

本节中的示例都默认文件对象 f 已经创建。

To read a file’s contents, call f.read(size), which reads some quantity of data and returns it as a string. size is an optional numeric argument. When size is omitted or negative, the entire contents of the file will be read and returned; it’s your problem if the file is twice as large as your machine’s memory. Otherwise, at most size bytes are read and returned. If the end of the file has been reached, f.read() will return an empty string (“”).

要读取文件内容,需要调用 f.read(size),该方法读取若干数量的数据并以字符串形式返回其内容,字符串长度为数值size 所指定的大小。如果没有指定 size或者指定为负数,就会读取并返回整个文件。当文件大小为当前机器内存两倍时,就会产生问题。正常情况下,会尽可能按比较大的size 读取和返回数据。如果到了文件末尾,f.read()会返回一个空字符串(“”)。

>>> f.read()
'This is the entire file.\n'
>>> f.read()
''

f.readline() reads a single line from the file; a newline character (\n) is left at the end of the string, and is only omitted on the last line of the file if the file doesn’t end in a newline. This makes the return value unambiguous; if f.readline() returns an empty string, the end of the file has been reached, while a blank line is represented by ‘\n’, a string containing only a single newline.

f.readline()从文件中读取单独一行,字符串结尾会自动加上一个换行符,只有当文件最后一行没有以换行符结尾时,这一操作才会被忽略。这样返回值就不会有什么混淆不清,如果如果 f.readline()返回一个空字符串,那就表示到达了文件末尾,如果是一个空行,就会描述为’\n´ ,一个只包含换行符的字符串。

f.readline()
‘This is the first line of the file.\n’
f.readline()
‘Second line of the file\n’
f.readline()
‘’

f.readlines() returns a list containing all the lines of data in the file. If given an optional parameter sizehint, it reads that many bytes from the file and enough more to complete a line, and returns the lines from that. This is often used to allow efficient reading of a large file by lines, but without having to load the entire file in memory. Only complete lines will be returned.

f.readlines()返回一个列表,其中包含了文件中所有的数据行。如果给定了sizehint参数,就会读入多于一行的比特数,从中返回多行文本。这个功能通常用于高效读取大型行文件,避免了将整个文件读入内存。这种操作只返回完整的行。

f.readlines()
[‘This is the first line of the file.\n’, ‘Second line of the file\n’]

f.write(string) writes the contents of string to the file, returning None.

f.write(string) 将 string 的内容写入文件,返回 None 。

f.write(‘This is a test\n’)

To write something other than a string, it needs to be converted to a string first:

如果需要写入字符串以外的数据,就要先把这些数据转换为字符串。

value = (‘the answer’, 42)
s = str(value)
f.write(s)

f.tell() returns an integer giving the file object’s current position in the file, measured in bytes from the beginning of the file. To change the file object’s position, use “f.seek(offset, from_what)”. The position is computed from adding offset to a reference point; the reference point is selected by the from_what argument. A from_what value of 0 measures from the beginning of the file, 1 uses the current file position, and 2 uses the end of the file as the reference point. from_what can be omitted and defaults to 0, using the beginning of the file as the reference point.

f.tell()返回一个整数,代表文件对象在文件中的指针位置,该数值计量了自文件开头到指针处的比特数。需要改变文件对象指针话话,使用"f.seek(offset,from_what)" 。指针在该操作中从指定的引用位置移动offset 比特,引用位置由 from_what 参数指定。 from_what值为0表示自文件起初处开始,1表示自当前文件指针位置开始,2表示自文件末尾开始。 from_what 可以忽略,其默认值为零,此时从文件头开始。

>>> f = open('/tmp/workfile', 'r+')
>>> f.write('0123456789abcdef')
>>> f.seek(5)     # Go to the 6th byte in the file
>>> f.read(1)
'5'
>>> f.seek(-3, 2) # Go to the 3rd byte before the end
>>> f.read(1)
'd'

When you’re done with a file, call f.close() to close it and free up any system resources taken up by the open file. After calling f.close(), attempts to use the file object will automatically fail.

文件使用完后,调用 f.close()可以关闭文件,释放打开文件后占用的系统资源。调用 f.close()之后,再调用文件对象会自动引发错误。

f.close()
f.read()
Traceback (most recent call last):
File “”, line 1, in ?
ValueError: I/O operation on closed file

File objects have some additional methods, such as isatty() and truncate() which are less frequently used; consult the Library Reference for a complete guide to file objects.

文件对象还有一些不太常用的附加方法,比如 isatty() 和truncate() 在库参考手册中有文件对象的完整指南。

7.2.2 pickle 模块 pickle Module

Strings can easily be written to and read from a file. Numbers take a bit more effort, since the read() method only returns strings, which will have to be passed to a function like int(), which takes a string like ‘123’ and returns its numeric value 123. However, when you want to save more complex data types like lists, dictionaries, or class instances, things get a lot more complicated.

我们可以很容易的读写文件中的字符串。数值就要多费点儿周折,因为read() 方法只会返回字符串,应该将其传入 int()方法中,就可以将 '123’这样的字符转为对应的数值123。不过,当你需要保存更为复杂的数据类型,例如链表、字典,类的实例,事情就会变得更复杂了。

Rather than have users be constantly writing and debugging code to save complicated data types, Python provides a standard module called pickle. This is an amazing module that can take almost any Python object (even some forms of Python code!), and convert it to a string representation; this process is called pickling. Reconstructing the object from the string representation is called unpickling. Between pickling and unpickling, the string representing the object may have been stored in a file or data, or sent over a network connection to some distant machine.

好在用户不必要非得自己编写和调试保存复杂数据类型的代码。 Python提供了一个名为 pickle的标准模块。这是一个令人赞叹的模块,几乎可以把任何 Python对象 (甚至是一些 Python 代码段!)表达为为字符串,这一过程称之为封装 ( pickling)。从字符串表达出重新构造对象称之为拆封( unpickling)。封装状态中的对象可以存储在文件或对象中,也可以通过网络在远程的机器之间传输。

If you have an object x, and a file object f that’s been opened for writing, the simplest way to pickle the object takes only one line of code:

如果你有一个对象 x ,一个以写模式打开的文件对象 f,封装对像的最简单的方法只需要一行代码:

pickle.dump(x, f)

To unpickle the object again, if f is a file object which has been opened for reading:

如果 f是一个以读模式打开的文件对象,就可以重装拆封这个对象:

x = pickle.load(f)

(There are other variants of this, used when pickling many objects or when you don’t want to write the pickled data to a file; consult the complete documentation for pickle in the Python Library Reference.)

(如果不想把封装的数据写入文件,这里还有一些其它的变化可用。完整的pickle 文档请见Python 库参考手册)。

pickle is the standard way to make Python objects which can be stored and reused by other programs or by a future invocation of the same program; the technical term for this is a persistent object. Because pickle is so widely used, many authors who write Python extensions take care to ensure that new data types such as matrices can be properly pickled and unpickled.

pickle 是存储 Python 对象以供其它程序或其本身以后调用的标准方法。提供这一组技术的是一个持久化对象( persistent object )。因为 pickle 的用途很广泛,很多 Python 扩展的作者都非常注意类似矩阵这样的新数据类型是否适合封装和拆封。

Subsections 
8.1 异常 Exceptions 
8.2 处理异常 Handling Exceptions 
8.3 抛出异常 Raising Exceptions 
8.4 用户自定义异常 User-defined Exceptions 
8.5 定义清理行为 Defining Clean-up Actions

8. 错误和异常 Errors and Exceptions

Until now error messages haven’t been more than mentioned, but if you have tried out the examples you have probably seen some. There are (at least) two distinguishable kinds of errors: syntax errors and exceptions.

至今为止还没有进一步的谈论过错误信息,不过在你已经试验过的那些例子中,可能已经遇到过一些。Python 中(至少)有两种错误:语法错误和异常( syntax errorsand exceptions )。

section语法错误 Syntax Errors

Syntax errors, also known as parsing errors, are perhaps the most common kind of complaint you get while you are still learning Python:

语法错误,也称作解析错误,可能是学习 Python 的过程中最容易犯的:

while True print ‘Hello world’
File “”, line 1, in ?
while True print ‘Hello world’
^
SyntaxError: invalid syntax

The parser repeats the offending line and displays a little `arrow’ pointing at the earliest point in the line where the error was detected. The error is caused by (or at least detected at) the token preceding the arrow: in the example, the error is detected at the keyword print, since a colon (“:”) is missing before it. File name and line number are printed so you know where to look in case the input came from a script.

解析器会重复出错的行,并在行中最早发现的错误位置上显示一个小箭头。错误(至少是被检测到的)就发生在箭头指向的位置。示例中的错误表现在关键字print 上,因为在它之前少了一个冒号( “:”)。同时也会显示文件名和行号,这样你就可以知道错误来自哪个脚本,什么位置。

8.1 异常 Exceptions

Even if a statement or expression is syntactically correct, it may cause an error when an attempt is made to execute it. Errors detected during execution are called exceptions and are not unconditionally fatal: you will soon learn how to handle them in Python programs. Most exceptions are not handled by programs, however, and result in error messages as shown here:

即使是在语法上完全正确的语句,尝试执行它的时候,也有可能会发生错误。在程序运行中检测出的错误称之为异常,它通常不会导致致命的问题,你很快就会学到如何在 Python 程序中控制它们。大多数异常不会由程序处理,而是显示一个错误信息:

10 * (1/0)
Traceback (most recent call last):
File “”, line 1, in ?
ZeroDivisionError: integer division or modulo by zero
4 + spam*3
Traceback (most recent call last):
File “”, line 1, in ?
NameError: name ‘spam’ is not defined
‘2’ + 2
Traceback (most recent call last):
File “”, line 1, in ?
TypeError: cannot concatenate ‘str’ and ‘int’ objects

The last line of the error message indicates what happened. Exceptions come in different types, and the type is printed as part of the message: the types in the example are ZeroDivisionError, NameError and TypeError. The string printed as the exception type is the name of the built-in exception that occurred. This is true for all built-in exceptions, but need not be true for user-defined exceptions (although it is a useful convention). Standard exception names are built-in identifiers (not reserved keywords).

错误信息的最后一行指出发生了什么错误。异常也有不同的类型,异常类型做为错误信息的一部分显示出来:示例中的异常分别为 零除错误( ZeroDivisionError ) ,命名错误( NameError) 和 类型错误(TypeError)。打印错误信息时,异常的类型作为异常的内置名显示。对于所有的内置异常都是如此,不过用户自定义异常就不一定了(尽管这是一个很有用的约定)。标准异常名是内置的标识(没有保留关键字)。

The rest of the line is a detail whose interpretation depends on the exception type; its meaning is dependent on the exception type.

这一行后一部分是关于该异常类型的详细说明,这意味着它的内容依赖于异常类型。

The preceding part of the error message shows the context where the exception happened, in the form of a stack backtrace. In general it contains a stack backtrace listing source lines; however, it will not display lines read from standard input.

错误信息的前半部分以堆栈的形式列出异常发生的位置。通常在堆栈中列出了源代码行,然而,来自标准输入的源码不会显示出来。

The Python Library Reference lists the built-in exceptions and their meanings.

Python 库参考手册列出了内置异常和它们的含义。

8.2 处理异常 Handling Exceptions

It is possible to write programs that handle selected exceptions. Look at the following example, which asks the user for input until a valid integer has been entered, but allows the user to interrupt the program (using Control-C or whatever the operating system supports); note that a user-generated interruption is signalled by raising the KeyboardInterrupt exception.

通过编程可以处理指定的异常。以下的例子重复要求用户输入一个值,直到用户输入的是一个合法的整数为止。不过这个程序允许用户中断程序(使用Control-C 或者其它操作系统支持的方法)。需要注意的是用户发出的中断会引发一个KeyboardInterrupt 异常。

while True:
… try:
… x = int(raw_input("Please enter a number: "))
… break
… except ValueError:
… print “Oops! That was no valid number. Try again…”

The try statement works as follows.

try 语句按如下方式工作:

First, the try clause (the statement(s) between the try and except keywords) is executed.
首先,执行 try 子句(在 try 和 except 关键字之间的部分)。

If no exception occurs, the except clause is skipped and execution of the try statement is finished.
如果没有异常发生, except 子句 在 try 语句执行完毕后就被忽略了。

If an exception occurs during execution of the try clause, the rest of the clause is skipped. Then if its type matches the exception named after the except keyword, the rest of the try clause is skipped, the except clause is executed, and then execution continues after the try statement.
如果在 try 子句执行过程中发生了异常,那么该子句其余的部分就会被忽略。如果异常匹配于 except 关键字后面指定的异常类型,就执行对应的except子句,忽略try子句的其它部分。然后继续执行try语句之后的代码。

If an exception occurs which does not match the exception named in the except clause, it is passed on to outer try statements; if no handler is found, it is an unhandled exception and execution stops with a message as shown above.
如果发生了一个异常,在 except 子句中没有与之匹配的分支,它就会传递到上一级 try 语句中。如果最终仍找不到对应的处理语句,它就成为一个未处理异常,终止程序运行,显示提示信息。

A try statement may have more than one except clause, to specify handlers for different exceptions. At most one handler will be executed. Handlers only handle exceptions that occur in the corresponding try clause, not in other handlers of the same try statement. An except clause may name multiple exceptions as a parenthesized list, for example:

一个 try 语句可能包含多个 except 子句,分别指定处理不同的异常。至多只会有一个分支被执行。异常处理程序只会处理对应的 try 子句中发生的异常,在同一个 try 语句中,其他子句中发生的异常则不作处理。一个except子句可以在括号中列出多个异常的名字,例如:

… except (RuntimeError, TypeError, NameError):
… pass

The last except clause may omit the exception name(s), to serve as a wildcard. Use this with extreme caution, since it is easy to mask a real programming error in this way! It can also be used to print an error message and then re-raise the exception (allowing a caller to handle the exception as well):

最后一个 except 子句可以省略异常名,把它当做一个通配项使用。一定要慎用这种方法,因为它很可能会屏蔽掉真正的程序错误,使人无法发现!它也可以用于打印一行错误信息,然后重新抛出异常(可以使调用者更好的处理异常)。

import sys

try:
f = open(‘myfile.txt’)
s = f.readline()
i = int(s.strip())
except IOError, (errno, strerror):
print “I/O error(%s): %s” % (errno, strerror)
except ValueError:
print “Could not convert data to an integer.”
except:
print “Unexpected error:”, sys.exc_info()[0]
raise

The try … except statement has an optional else clause, which, when present, must follow all except clauses. It is useful for code that must be executed if the try clause does not raise an exception. For example:

try … except 语句可以带有一个 else 子句, 该子句只能出现在所有 except 子句之后。当 try 语句没有抛出异常时,需要执行一些代码,可以使用这个子句。例如:

for arg in sys.argv[1:]:
try:
f = open(arg, ‘r’)
except IOError:
print ‘cannot open’, arg
else:
print arg, ‘has’, len(f.readlines()), ‘lines’
f.close()

The use of the else clause is better than adding additional code to the try clause because it avoids accidentally catching an exception that wasn’t raised by the code being protected by the try … except statement.

使用 else 子句比在 try 子句中附加代码要好,因为这样可以避免 try …
keywordexcept 意外的截获本来不属于它们保护的那些代码抛出的异常。

When an exception occurs, it may have an associated value, also known as the exception’s argument. The presence and type of the argument depend on the exception type.

发生异常时,可能会有一个附属值,作为异常的参数存在。这个参数是否存在、是什么类型,依赖于异常的类型。

The except clause may specify a variable after the exception name (or list). The variable is bound to an exception instance with the arguments stored in instance.args. For convenience, the exception instance defines getitem and str so the arguments can be accessed or printed directly without having to reference .args.

在异常名(列表)之后,也可以为 except 子句指定一个变量。这个变量绑定于一个异常实例,它存储在 instance.args 的参数中。为了方便起见,异常实例定义了 getitemstr,这样就可以直接访问过打印参数而不必引用 .args。

try:
… raise Exception(‘spam’, ‘eggs’)
… except Exception, inst:
… print type(inst) # the exception instance
… print inst.args # arguments stored in .args
… print inst # str allows args to printed directly
… x, y = inst # getitem allows args to be unpacked directly
… print ‘x =’, x
… print ‘y =’, y


(‘spam’, ‘eggs’)
(‘spam’, ‘eggs’)
x = spam
y = eggs

If an exception has an argument, it is printed as the last part (`detail’) of the message for unhandled exceptions.

对于未处理的异常,如果它有一个参数,那做就会作为错误信息的最后一部分(“明细”)打印出来。

Exception handlers don’t just handle exceptions if they occur immediately in the try clause, but also if they occur inside functions that are called (even indirectly) in the try clause. For example:

异常处理句柄不止可以处理直接发生在 try 子句中的异常,即使是其中(甚至是间接)调用的函数,发生了异常,也一样可以处理。例如:

def this_fails():
… x = 1/0

try:
… this_fails()
… except ZeroDivisionError, detail:
… print ‘Handling run-time error:’, detail

Handling run-time error: integer division or modulo

8.3 抛出异常 Raising Exceptions

The raise statement allows the programmer to force a specified exception to occur. For example:

在发生了特定的异常时,程序员可以用 raise 语句强制抛出异常。例如:

raise NameError, ‘HiThere’
Traceback (most recent call last):
File “”, line 1, in ?
NameError: HiThere

The first argument to raise names the exception to be raised. The optional second argument specifies the exception’s argument.

第一个参数指定了所抛出异常的名称,第二个指定了异常的参数。

If you need to determine whether an exception was raised but don’t intend to handle it, a simpler form of the raise statement allows you to re-raise the exception:

如果你决定抛出一个异常而不处理它, raise 语句可以让你很简单的重新抛出该异常。

try:
… raise NameError, ‘HiThere’
… except NameError:
… print ‘An exception flew by!’
… raise

An exception flew by!
Traceback (most recent call last):
File “”, line 2, in ?
NameError: HiThere

8.4 用户自定义异常 User-defined Exceptions

Programs may name their own exceptions by creating a new exception class. Exceptions should typically be derived from the Exception class, either directly or indirectly. For example:

在程序中可以通过创建新的异常类型来命名自己的异常。异常类通常应该直接或间接的从 Exception 类派生,例如:

class MyError(Exception):
… def init(self, value):
… self.value = value
… def str(self):
… return repr(self.value)

try:
… raise MyError(2*2)
… except MyError, e:
… print ‘My exception occurred, value:’, e.value

My exception occurred, value: 4
raise MyError, ‘oops!’
Traceback (most recent call last):
File “”, line 1, in ?
main.MyError: ‘oops!’

Exception classes can be defined which do anything any other class can do, but are usually kept simple, often only offering a number of attributes that allow information about the error to be extracted by handlers for the exception. When creating a module which can raise several distinct errors, a common practice is to create a base class for exceptions defined by that module, and subclass that to create specific exception classes for different error conditions:

异常类中可以定义任何其它类中可以定义的东西,但是通常为了保持简单,只在其中加入几个属性信息,以供异常处理句柄提取。如果一个新创建的模块中需要抛出几种不同的错误时,一个通常的作法是为该模块定义一个异常基类,然后针对不同的错误类型派生出对应的异常子类。

class Error(Exception):
“”“Base class for exceptions in this module.”“”
pass

class InputError(Error):
“”"Exception raised for errors in the input.

Attributes:
    expression -- input expression in which the error occurred
    message -- explanation of the error
"""

def __init__(self, expression, message):
    self.expression = expression
    self.message = message

class TransitionError(Error):
“”"Raised when an operation attempts a state transition that’s not
allowed.

Attributes:
    previous -- state at beginning of transition
    next -- attempted new state
    message -- explanation of why the specific transition is not allowed
"""

def __init__(self, previous, next, message):
    self.previous = previous
    self.next = next
    self.message = message

Most exceptions are defined with names that end in ``Error,‘’ similar to the naming of the standard exceptions.

与标准异常相似,大多数异常的命名都以“Error”结尾。

Many standard modules define their own exceptions to report errors that may occur in functions they define. More information on classes is presented in chapter , ``Classes.‘’

很多标准模块中都定义了自己的异常,用以报告在他们所定义的函数中可能发生的错误。关于类的进一步信息请参见第 9 章 ,“类”。

8.5 定义清理行为 Defining Clean-up Actions

The try statement has another optional clause which is intended to define clean-up actions that must be executed under all circumstances. For example:

try 语句还有另一个可选的子句,目的在于定义在任何情况下都一定要执行的功能。例如:

try:
… raise KeyboardInterrupt
… finally:
… print ‘Goodbye, world!’

Goodbye, world!
Traceback (most recent call last):
File “”, line 2, in ?
KeyboardInterrupt

A finally clause is executed whether or not an exception has occurred in the try clause. When an exception has occurred, it is re-raised after the finally clause is executed. The finally clause is also executed ``on the way out’’ when the try statement is left via a break or return statement.

不管try子句中有没有发生异常, finally 子句都一定会被执行。如果发生异常,在 finally 子句执行完后它会被重新抛出。 try 子句经由 break 或 return 退出也一样会执行 finally 子句。

The code in the finally clause is useful for releasing external resources (such as files or network connections), regardless of whether or not the use of the resource was successful.

在 finally 子句中的代码用于释放外部资源(例如文件或网络连接),不管这些资源是否已经成功利用。

A try statement must either have one or more except clauses or one finally clause, but not both.

在 try 语句中可以使用若干个 except 子句或一个 finally 子句,但两者不能共存。

#Subsections 
9.1 有关术语的话题 A Word About Terminology 
9.2 Python 作用域和命名空间 Python Scopes and Name Spaces 
9.3 初识类 A First Look at Classes 
9.3.1 类定义语法 Class Definition Syntax 
9.3.2 类对象 Class Objects 
9.3.3 实例对象 Instance Objects 
9.3.4 方法对象 Method Objects 
9.4 一些说明 Random Remarks 
9.5 继承 Inheritance 
9.5.1 多继承 Multiple Inheritance 
9.6 私有变量 Private Variables 
9.7 补充 Odds and Ends 
9.8 异常也是类 Exceptions Are Classes Too 
9.9 迭代器 Iterators 
9.10 生成器 Generators

9. 类 Classes

Python’s class mechanism adds classes to the language with a minimum of new syntax and semantics. It is a mixture of the class mechanisms found in C++ and Modula-3. As is true for modules, classes in Python do not put an absolute barrier between definition and user, but rather rely on the politeness of the user not to ``break into the definition.‘’ The most important features of classes are retained with full power, however: the class inheritance mechanism allows multiple base classes, a derived class can override any methods of its base class or classes, a method can call the method of a base class with the same name. Objects can contain an arbitrary amount of private data.

Python 在尽可能不增加新的语法和语义的情况下加入了类机制。这种机制是 C++ 和 Modula-3 的混合。Python中的类没有在用户和定义之间建立一个绝对的屏障,而是依赖于用户自觉的不去“破坏定义”。然而,类机制最重要的功能都完整的保留下来。类继承机制允许多继承,派生类可以覆盖(override)基类中的任何方法,方法中可以调用基类中的同名方法。对象可以包含任意数量的私有成员。

In C++ terminology, all class members (including the data members) are public, and all member functions are virtual. There are no special constructors or destructors. As in Modula-3, there are no shorthands for referencing the object’s members from its methods: the method function is declared with an explicit first argument representing the object, which is provided implicitly by the call. As in Smalltalk, classes themselves are objects, albeit in the wider sense of the word: in Python, all data types are objects. This provides semantics for importing and renaming. Unlike C++ and Modula-3, built-in types can be used as base classes for extension by the user. Also, like in C++ but unlike in Modula-3, most built-in operators with special syntax (arithmetic operators, subscripting etc.) can be redefined for class instances.

用 C++ 术语来讲,所有的类成员(包括数据成员)都是公有( public )的,所有的成员函数都是虚拟( virtual )的。没有特定的构造和析构函数。用Modula-3的术语来讲,在成员方法中没有什么简便的方式(shorthands)可以引用对象的成员:方法函数在定义时需要以引用的对象做为第一个参数,调用时则会隐式引用对象。这样就形成了语义上的引入和重命名。( This provides semantics for importing and renaming. )但是,像 C++ 而非 Modula-3 中那样,大多数带有特殊语法的内置操作符(算法运算符、下标等)都可以针对类的需要重新定义。

9.1 有关术语的话题 A Word About Terminology

Lacking universally accepted terminology to talk about classes, I will make occasional use of Smalltalk and C++ terms. (I would use Modula-3 terms, since its object-oriented semantics are closer to those of Python than C++, but I expect that few readers have heard of it.)

由于没有什么关于类的通用术语,我从 Smalltalk 和 C++ 中借用一些(我更希望用 Modula-3 的,因为它的面向对象机制比 C++更接近Python,不过我想没多少读者听说过它)。

I also have to warn you that there’s a terminological pitfall for object-oriented readers: the word ``object’’ in Python does not necessarily mean a class instance. Like C++ and Modula-3, and unlike Smalltalk, not all types in Python are classes: the basic built-in types like integers and lists are not, and even somewhat more exotic types like files aren’t. However, all Python types share a little bit of common semantics that is best described by using the word object.

我要提醒读者,这里有一个面向对象方面的术语陷阱,在 Python 中“对象”这个词不一定指类实例。Python 中并非所有的类型都是类:例如整型、链表这些内置数据类型就不是,甚至某些像文件这样的外部类型也不是,这一点类似于 C++ 和 Modula-3,而不像 Smalltalk。然而,所有的 Python 类型在语义上都有一点相同之处:描述它们的最贴切词语是“对象”。

Objects have individuality, and multiple names (in multiple scopes) can be bound to the same object. This is known as aliasing in other languages. This is usually not appreciated on a first glance at Python, and can be safely ignored when dealing with immutable basic types (numbers, strings, tuples). However, aliasing has an (intended!) effect on the semantics of Python code involving mutable objects such as lists, dictionaries, and most types representing entities outside the program (files, windows, etc.). This is usually used to the benefit of the program, since aliases behave like pointers in some respects. For example, passing an object is cheap since only a pointer is passed by the implementation; and if a function modifies an object passed as an argument, the caller will see the change – this eliminates the need for two different argument passing mechanisms as in Pascal.

对象是被特化的,多个名字(在多个作用域中)可以绑定同一个对象。这相当于其它语言中的别名。通常对 Python 的第一印象中会忽略这一点,使用那些不可变的基本类型(数值、字符串、元组)时也可以很放心的忽视它。然而,在 Python 代码调用字典、链表之类可变对象,以及大多数涉及程序外部实体(文件、窗体等等)的类型时,这一语义就会有影响。这通用有助于优化程序,因为别名的行为在某些方面类似于指针。例如,很容易传递一个对象,因为在行为上只是传递了一个指针。如果函数修改了一个通过参数传递的对象,调用者可以接收到变化--在 Pascal 中这需要两个不同的参数传递机制。

9.2 Python 作用域和命名空间 Python Scopes and Name Spaces

Before introducing classes, I first have to tell you something about Python’s scope rules. Class definitions play some neat tricks with namespaces, and you need to know how scopes and namespaces work to fully understand what’s going on. Incidentally, knowledge about this subject is useful for any advanced Python programmer.

在介绍类之前,我首先介绍一些有关 Python 作用域的规则:类的定义非常巧妙的运用了命名空间,要完全理解接下来的知识,需要先理解作用域和命名空间的工作原理。另外,这一切的知识对于任何高级 Python 程序员都非常有用。

Let’s begin with some definitions.

我们从一些定义开始。

A namespace is a mapping from names to objects. Most namespaces are currently implemented as Python dictionaries, but that’s normally not noticeable in any way (except for performance), and it may change in the future. Examples of namespaces are: the set of built-in names (functions such as abs(), and built-in exception names); the global names in a module; and the local names in a function invocation. In a sense the set of attributes of an object also form a namespace. The important thing to know about namespaces is that there is absolutely no relation between names in different namespaces; for instance, two different modules may both define a function ``maximize’’ without confusion – users of the modules must prefix it with the module name.

命名空间是从命名到对象的映射。当前命名空间主要是通过 Python 字典实现的,不过通常不关心具体的实现方式(除非出于性能考虑),以后也有可能会改变其实现方式。以下有一些命名空间的例子:内置命名(像 <#2558#>abs() 这样的函数,以及内置异常名)集,模块中的全局命名,函数调用中的局部命名。某种意义上讲对象的属性集也是一个命名空间。关于命名空间需要了解的一件很重要的事就是不同命名空间中的命名没有任何联系,例如两个不同的模块可能都会定义一个名为“maximize”的函数而不会发生混淆--用户必须以模块名为前缀来引用它们。

By the way, I use the word attribute for any name following a dot – for example, in the expression z.real, real is an attribute of the object z. Strictly speaking, references to names in modules are attribute references: in the expression modname.funcname, modname is a module object and funcname is an attribute of it. In this case there happens to be a straightforward mapping between the module’s attributes and the global names defined in the module: they share the same namespace! 9.1

顺便提一句,我称 Python 中任何一个“.”之后的命名为属性--例如,表达式 z.real 中的 real 是对象 z 的一个属性。严格来讲,从模块中引用命名是引用属性:表达式 modname.funcname 中, modname 是一个模块对象,funcname 是它的一个属性。因此,模块的属性和模块中的全局命名有直接的映射关系:它们共享同一命名空间!9.2

Attributes may be read-only or writable. In the latter case, assignment to attributes is possible. Module attributes are writable: you can write “modname.the_answer = 42”. Writable attributes may also be deleted with the del statement. For example, “del modname.the_answer” will remove the attribute the_answer from the object named by modname.

属性可以是只读过或写的。后一种情况下,可以对属性赋值。你可以这样作: “modname.the_answer = 42”。可写的属性也可以用 del 语句删除。例如:“del modname.the_answer” 会从 modname 对象中删除 the_answer 属性。

Name spaces are created at different moments and have different lifetimes. The namespace containing the built-in names is created when the Python interpreter starts up, and is never deleted. The global namespace for a module is created when the module definition is read in; normally, module namespaces also last until the interpreter quits. The statements executed by the top-level invocation of the interpreter, either read from a script file or interactively, are considered part of a module called main, so they have their own global namespace. (The built-in names actually also live in a module; this is called builtin.)

不同的命名空间在不同的时刻创建,有不同的生存期。包含内置命名的命名空间在 Python 解释器启动时创建,会一直保留,不被删除。模块的全局命名空间在模块定义被读入时创建,通常,模块命名空间也会一直保存到解释器退出。由解释器在最高层调用执行的语句,不管它是从脚本文件中读入还是来自交互式输入,都是 main 模块的一部分,所以它们也拥有自己的命名空间。(内置命名也同样被包含在一个模块中,它被称作 builtin 。)

The local namespace for a function is created when the function is called, and deleted when the function returns or raises an exception that is not handled within the function. (Actually, forgetting would be a better way to describe what actually happens.) Of course, recursive invocations each have their own local namespace.

当函数被调用时创建一个局部命名空间,函数反正返回过抛出一个未在函数内处理的异常时删除。(实际上,说是遗忘更为贴切)。当然,每一个递归调用拥有自己的命名空间。

A scope is a textual region of a Python program where a namespace is directly accessible. ``Directly accessible’’ here means that an unqualified reference to a name attempts to find the name in the namespace.

尽管作用域是静态定义,在使用时他们都是动态的。每次执行时,至少有三个命名空间可以直接访问的作用域嵌套在一起:包含局部命名的使用域在最里面,首先被搜索;其次搜索的是中层的作用域,这里包含了同级的函数;最后搜索最外面的作用域,它包含内置命名。

Although scopes are determined statically, they are used dynamically. At any time during execution, there are at least three nested scopes whose namespaces are directly accessible: the innermost scope, which is searched first, contains the local names; the namespaces of any enclosing functions, which are searched starting with the nearest enclosing scope; the middle scope, searched next, contains the current module’s global names; and the outermost scope (searched last) is the namespace containing built-in names.

尽管作用域是静态定义,在使用时他们都是动态的。每次执行时,至少有三个命名空间可以直接访问的作用域嵌套在一起:包含局部命名的使用域在最里面,首先被搜索;其次搜索的是中层的作用域,这里包含了同级的函数;最后搜索最外面的作用域,它包含内置命名。

If a name is declared global, then all references and assignments go directly to the middle scope containing the module’s global names. Otherwise, all variables found outside of the innermost scope are read-only.

如果一个命名声明为全局的,那么所有的赋值和引用都直接针对包含模全局命名的中级作用域。另外,从外部访问到的所有内层作用域的变量都是只读的。

Usually, the local scope references the local names of the (textually) current function. Outside of functions, the local scope references the same namespace as the global scope: the module’s namespace. Class definitions place yet another namespace in the local scope.

从文本意义上讲,局部作用域引用当前函数的命名。在函数之外,局部作用域与全局使用域引用同一命名空间:模块命名空间。类定义也是局部作用域中的另一个命名空间。

It is important to realize that scopes are determined textually: the global scope of a function defined in a module is that module’s namespace, no matter from where or by what alias the function is called. On the other hand, the actual search for names is done dynamically, at run time – however, the language definition is evolving towards static name resolution, at ``compile’’ time, so don’t rely on dynamic name resolution! (In fact, local variables are already determined statically.)

作用域决定于源程序的文本:一个定义于某模块中的函数的全局作用域是该模块的命名空间,而不是该函数的别名被定义或调用的位置,了解这一点非常重要。另一方面,命名的实际搜索过程是动态的,在运行时确定的——然而,Python 语言也在不断发展,以后有可能会成为静态的“编译”时确定,所以不要依赖于动态解析!(事实上,局部变量已经是静态确定了。)

A special quirk of Python is that assignments always go into the innermost scope. Assignments do not copy data – they just bind names to objects. The same is true for deletions: the statement “del x” removes the binding of x from the namespace referenced by the local scope. In fact, all operations that introduce new names use the local scope: in particular, import statements and function definitions bind the module or function name in the local scope. (The global statement can be used to indicate that particular variables live in the global scope.)

Python 的一个特别之处在于其赋值操作总是在最里层的作用域。赋值不会复制数据——只是将命名绑定到对象。删除也是如此:“del x” 只是从局部作用域的命名空间中删除命名 x 。事实上,所有引入新命名的操作都作用于局部作用域。特别是 import 语句和函数定将模块名或函数绑定于局部作用域。(可以使用 global 语句将变量引入到全局作用域。)

9.3 初识类 A First Look at Classes

Classes introduce a little bit of new syntax, three new object types, and some new semantics.

类引入了一点新的语法,三种新的对象类型,以及一些新的语义。

9.3.1 类定义语法 Class Definition Syntax
The simplest form of class definition looks like this:

最简单的类定义形式如下:

class ClassName:

.
.
.

Class definitions, like function definitions (def statements) must be executed before they have any effect. (You could conceivably place a class definition in a branch of an if statement, or inside a function.)

类的定义就像函数定义( def 语句),要先执行才能生效。(你当然可以把它放进 if 语句的某一分支,或者一个函数的内部。)

In practice, the statements inside a class definition will usually be function definitions, but other statements are allowed, and sometimes useful – we’ll come back to this later. The function definitions inside a class normally have a peculiar form of argument list, dictated by the calling conventions for methods – again, this is explained later.

习惯上,类定义语句的内容通常是函数定义,不过其它语句也可以,有时会很有用——后面我们再回过头来讨论。类中的函数定义通常包括了一个特殊形式的参数列表,用于方法调用约定——同样我们在后面讨论这些。

When a class definition is entered, a new namespace is created, and used as the local scope – thus, all assignments to local variables go into this new namespace. In particular, function definitions bind the name of the new function here.

定义一个类的时候,会创建一个新的命名空间,将其作为局部作用域使用——因此,所以对局部变量的赋值都引入新的命名空间。特别是函数定义将新函数的命名绑定于此。

When a class definition is left normally (via the end), a class object is created. This is basically a wrapper around the contents of the namespace created by the class definition; we’ll learn more about class objects in the next section. The original local scope (the one in effect just before the class definitions was entered) is reinstated, and the class object is bound here to the class name given in the class definition header (ClassName in the example).

类定义完成时(正常退出),就创建了一个类对象。基本上它是对类定义创建的命名空间进行了一个包装;我们在下一节进一步学习类对象的知识。原始的局部作用域(类定义引入之前生效的那个)得到恢复,类对象在这里绑定到类定义头部的类名(例子中是 ClassName )。

9.3.2 类对象 Class Objects
Class objects support two kinds of operations: attribute references and instantiation.

类对象支持两种操作:属性引用和实例化。

Attribute references use the standard syntax used for all attribute references in Python: obj.name. Valid attribute names are all the names that were in the class’s namespace when the class object was created. So, if the class definition looked like this:

属性引用使用和 Python 中所有的属性引用一样的标准语法:obj.name。类对象创建后,类命名空间中所有的命名都是有效属性名。所以如果类定义是这样:

class MyClass:
“A simple example class”
i = 12345
def f(self):
return ‘hello world’

then MyClass.i and MyClass.f are valid attribute references, returning an integer and a method object, respectively. Class attributes can also be assigned to, so you can change the value of MyClass.i by assignment. doc is also a valid attribute, returning the docstring belonging to the class: “A simple example class”.

那么 MyClass.i 和 MyClass.f 是有效的属性引用,分别返回一个整数和一个方法对象。也可以对类属性赋值,你可以通过给MyClass.i 赋值来修改它。 doc 也是一个有效的属性,返回类的文档字符串: “A simple example class”。

Class instantiation uses function notation. Just pretend that the class object is a parameterless function that returns a new instance of the class. For example (assuming the above class):

类的实例化使用函数符号。只要将类对象看作是一个返回新的类实例的无参数函数即可。例如(假设沿用前面的类):

x = MyClass()

creates a new instance of the class and assigns this object to the local variable x.

以上创建了一个新的类实例并将该对象赋给局部变量 x。

The instantiation operation (``calling’’ a class object) creates an empty object. Many classes like to create objects in a known initial state. Therefore a class may define a special method named init(), like this:

这个实例化操作(“调用”一个类对象)来创建一个空的对象。很多类都倾向于将对象创建为有初始状态的。因此类可能会定义一个名为 init() 的特殊方法,像下面这样:

def __init__(self):
    self.data = []

When a class defines an init() method, class instantiation automatically invokes init() for the newly-created class instance. So in this example, a new, initialized instance can be obtained by:

类定义了 init() 方法的话,类的实例化操作会自动为新创建的类实例调用 init() 方法。所以在下例中,可以这样创建一个新的实例:

x = MyClass()

Of course, the init() method may have arguments for greater flexibility. In that case, arguments given to the class instantiation operator are passed on to init(). For example,

当然,出于弹性的需要, init() 方法可以有参数。事实上,参数通过 init() 传递到类的实例化操作上。例如:

class Complex:
… def init(self, realpart, imagpart):
… self.r = realpart
… self.i = imagpart

x = Complex(3.0, -4.5)
x.r, x.i
(3.0, -4.5)

9.3.3 实例对象 Instance Objects
Now what can we do with instance objects? The only operations understood by instance objects are attribute references. There are two kinds of valid attribute names.

现在我们可以用实例对象作什么?实例对象唯一可用的操作就是属性引用。有两种有效的属性名。

The first I’ll call data attributes. These correspond to instance variables'' in Smalltalk, and to data members’’ in C++. Data attributes need not be declared; like local variables, they spring into existence when they are first assigned to. For example, if x is the instance of MyClass created above, the following piece of code will print the value 16, without leaving a trace:

第一种称作数据属性。这相当于 Smalltalk 中的“实例变量”或 C++中的“数据成员”。和局部变量一样,数据属性不需要声明,第一次使用时它们就会生成。例如,如果 x 是前面创建的 MyClass 实例,下面这段代码会打印出 16 而不会有任何多余的残留:

x.counter = 1
while x.counter < 10:
x.counter = x.counter * 2
print x.counter
del x.counter

The second kind of attribute references understood by instance objects are methods. A method is a function that ``belongs to’’ an object. (In Python, the term method is not unique to class instances: other object types can have methods as well. For example, list objects have methods called append, insert, remove, sort, and so on. However, below, we’ll use the term method exclusively to mean methods of class instance objects, unless explicitly stated otherwise.)

第二种为实例对象所接受的引用属性是方法。方法是属于一个对象的函数。(在 Python 中,方法不止是类实例所独有:其它类型的对象也可有方法。例如,链表对象有 append,insert,remove,sort 等等方法。然而,在这里,除非特别说明,我们提到的方法特指类方法)

Valid method names of an instance object depend on its class. By definition, all attributes of a class that are (user-defined) function objects define corresponding methods of its instances. So in our example, x.f is a valid method reference, since MyClass.f is a function, but x.i is not, since MyClass.i is not. But x.f is not the same thing as MyClass.f – it is a method object, not a function object.

实例对象的有效名称依赖于它的类。按照定义,类中所有(用户定义)的函数对象对应它的实例中的方法。所以在我们的例子中,x.f 是一个有效的方法引用,因为 MyClass.f 是一个函数。但 x.i 不是,因为 MyClass.i 是不是函数。不过 x.f 和 MyClass.f 不同--它是一个方法对象,不是一个函数对象。

9.3.4 方法对象 Method Objects
Usually, a method is called immediately:

通常方法是直接调用的:

x.f()

In our example, this will return the string ‘hello world’. However, it is not necessary to call a method right away: x.f is a method object, and can be stored away and called at a later time. For example:

在我们的例子中,这会返回字符串 ‘hello world’ 。然而,也不是一定要直接调用方法。 x.f 是一个方法对象,它可以存储起来以后调用。例如:

xf = x.f
while True:
print xf()

will continue to print “hello world” until the end of time.

会不断的打印 “hello world” 。

What exactly happens when a method is called? You may have noticed that x.f() was called without an argument above, even though the function definition for f specified an argument. What happened to the argument? Surely Python raises an exception when a function that requires an argument is called without any – even if the argument isn’t actually used…

调用方法时发生了什么?你可能注意到调用 x.f() 时没有引用前面标出的变量,尽管在 f 的函数定义中指明了一个参数。这个参数怎么了?事实上如果函数调用中缺少参数,Python 会抛出异常--甚至这个参数实际上没什么用……

Actually, you may have guessed the answer: the special thing about methods is that the object is passed as the first argument of the function. In our example, the call x.f() is exactly equivalent to MyClass.f(x). In general, calling a method with a list of n arguments is equivalent to calling the corresponding function with an argument list that is created by inserting the method’s object before the first argument.

实际上,你可能已经猜到了答案:方法的特别之处在于实例对象作为函数的第一个参数传给了函数。在我们的例子中,调用 x.f() 相当于 MyClass.f(x) 。通常,以 n 个参数的列表去调用一个方法就相当于将方法的对象插入到参数列表的最前面后,以这个列表去调用相应的函数。

If you still don’t understand how methods work, a look at the implementation can perhaps clarify matters. When an instance attribute is referenced that isn’t a data attribute, its class is searched. If the name denotes a valid class attribute that is a function object, a method object is created by packing (pointers to) the instance object and the function object just found together in an abstract object: this is the method object. When the method object is called with an argument list, it is unpacked again, a new argument list is constructed from the instance object and the original argument list, and the function object is called with this new argument list.

如果你还是不理解方法的工作原理,了解一下它的实现也许有帮助。引用非数据属性的实例属性时,会搜索它的类。如果这个命名确认为一个有效的函数对象类属性,就会将实例对象和函数对象封装进一个抽象对象:这就是方法对象。以一个参数列表调用方法对象时,它被重新拆封,用实例对象和原始的参数列表构造一个新的参数列表,然后函数对象调用这个新的参数列表。

9.4 一些说明 Random Remarks

〔有些内容可能需要明确一下……〕

Data attributes override method attributes with the same name; to avoid accidental name conflicts, which may cause hard-to-find bugs in large programs, it is wise to use some kind of convention that minimizes the chance of conflicts. Possible conventions include capitalizing method names, prefixing data attribute names with a small unique string (perhaps just an underscore), or using verbs for methods and nouns for data attributes.

同名的数据属性会覆盖方法属性,为了避免可能的命名冲突--这在大型程序中可能会导致难以发现的 bug --最好以某种命名约定来避免冲突。可选的约定包括方法的首字母大写,数据属性名前缀小写(可能只是一个下划线),或者方法使用动词而数据属性使用名词。

Data attributes may be referenced by methods as well as by ordinary users (``clients’') of an object. In other words, classes are not usable to implement pure abstract data types. In fact, nothing in Python makes it possible to enforce data hiding – it is all based upon convention. (On the other hand, the Python implementation, written in C, can completely hide implementation details and control access to an object if necessary; this can be used by extensions to Python written in C.)

数据属性可以由方法引用,也可以由普通用户(客户)调用。换句话说,类不能实现纯的数据类型。事实上 Python 中没有什么办法可以强制隐藏数据--一切都基本约定的惯例。(另一方法讲,Python 的实现是用 C 写成的,如果有必要,可以用 C 来编写 Python 扩展,完全隐藏实现的细节,控制对象的访问。)

Clients should use data attributes with care – clients may mess up invariants maintained by the methods by stamping on their data attributes. Note that clients may add data attributes of their own to an instance object without affecting the validity of the methods, as long as name conflicts are avoided – again, a naming convention can save a lot of headaches here.

客户应该小心使用数据属性--客户可能会因为随意修改数据属性而破坏了本来由方法维护的数据一致性。需要注意的是,客户只要注意避免命名冲突,就可以随意向实例中添加数据属性而不会影响方法的有效性--再次强调,命名约定可以省去很多麻烦。

There is no shorthand for referencing data attributes (or other methods!) from within methods. I find that this actually increases the readability of methods: there is no chance of confusing local variables and instance variables when glancing through a method.

从方法内部引用数据属性(以及其它方法!)没有什么快捷的方式。我认为这事实上增加了方法的可读性:即使粗略的浏览一个方法,也不会有混淆局部变量和实例变量的机会。

Conventionally, the first argument of methods is often called self. This is nothing more than a convention: the name self has absolutely no special meaning to Python. (Note, however, that by not following the convention your code may be less readable by other Python programmers, and it is also conceivable that a class browser program be written which relies upon such a convention.)

习惯上,方法的第一个参数命名为 self 。这仅仅是一个约定:对 Python 而言,self 绝对没有任何特殊含义。(然而要注意的是,如果不遵守这个约定,别的 Python 程序员阅读你的代码时会有不便,而且有些类浏览程序也是遵循此约定开发的。)

Any function object that is a class attribute defines a method for instances of that class. It is not necessary that the function definition is textually enclosed in the class definition: assigning a function object to a local variable in the class is also ok. For example:

类属性中的任何函数对象在类实例中都定义为方法。不是必须要将函数定义代码写进类定义中,也可以将一个函数对象赋给类中的一个变量。例如:

Function defined outside the class

def f1(self, x, y):
return min(x, x+y)

class C:
f = f1
def g(self):
return ‘hello world’
h = g

Now f, g and h are all attributes of class C that refer to function objects, and consequently they are all methods of instances of C – h being exactly equivalent to g. Note that this practice usually only serves to confuse the reader of a program.

现在 f, g 和 h 都是类 C 的属性,引用的都是函数对象,因此它们都是 C 实例的方法-- h 严格等于 g。要注意的是这种习惯通常只会迷惑程序的读者。

Methods may call other methods by using method attributes of the self argument:

通过 self 参数的方法属性,方法可以调用其它的方法:

class Bag:
def init(self):
self.data = []
def add(self, x):
self.data.append(x)
def addtwice(self, x):
self.add(x)
self.add(x)

Methods may reference global names in the same way as ordinary functions. The global scope associated with a method is the module containing the class definition. (The class itself is never used as a global scope!) While one rarely encounters a good reason for using global data in a method, there are many legitimate uses of the global scope: for one thing, functions and modules imported into the global scope can be used by methods, as well as functions and classes defined in it. Usually, the class containing the method is itself defined in this global scope, and in the next section we’ll find some good reasons why a method would want to reference its own class!

方法可以像引用普通的函数那样引用全局命名。与方法关联的全局作用域是包含类定义的模块。(类本身永远不会做为全局作用域使用!)尽管很少有好的理由在方法中使用全局数据,全局作用域确有很多合法的用途:其一是方法可以调用导入全局作用域的函数和方法,也可以调用定义在其中的类和函数。通常,包含此方法的类也会定义在这个全局作用域,在下一节我们会了解为何一个方法要引用自己的类!

9.5 继承 Inheritance

Of course, a language feature would not be worthy of the name ``class’’ without supporting inheritance. The syntax for a derived class definition looks as follows:

当然,如果一种语言不支持继承就,“类”就没有什么意义。派生类的定义如下所示:

class DerivedClassName(BaseClassName):

.
.
.

The name BaseClassName must be defined in a scope containing the derived class definition. Instead of a base class name, an expression is also allowed. This is useful when the base class is defined in another module,

命名 BaseClassName(示例中的基类名)必须与派生类定义在一个作用域内。除了类,还可以用表达式,基类定义在另一个模块中时这一点非常有用:

class DerivedClassName(modname.BaseClassName):

Execution of a derived class definition proceeds the same as for a base class. When the class object is constructed, the base class is remembered. This is used for resolving attribute references: if a requested attribute is not found in the class, it is searched in the base class. This rule is applied recursively if the base class itself is derived from some other class.

派生类定义的执行过程和基类是一样的。构造派生类对象时,就记住了基类。这在解析属性引用的时候尤其有用:如果在类中找不到请求调用的属性,就搜索基类。如果基类是由别的类派生而来,这个规则会递归的应用上去。

There’s nothing special about instantiation of derived classes: DerivedClassName() creates a new instance of the class. Method references are resolved as follows: the corresponding class attribute is searched, descending down the chain of base classes if necessary, and the method reference is valid if this yields a function object.

派生类的实例化没有什么特殊之处:DerivedClassName() (示列中的派生类)创建一个新的类实例。方法引用按如下规则解析:搜索对应的类属性,必要时沿基类链逐级搜索,如果找到了函数对象这个方法引用就是合法的

Derived classes may override methods of their base classes. Because methods have no special privileges when calling other methods of the same object, a method of a base class that calls another method defined in the same base class, may in fact end up calling a method of a derived class that overrides it. (For C++ programmers: all methods in Python are effectively virtual.)

派生类可能会覆盖其基类的方法。因为方法调用同一个对象中的其它方法时没有特权,基类的方法调用同一个基类的方法时,可能实际上最终调用了派生类中的覆盖方法。(对于 C++ 程序员来说,Python中的所有方法本质上都是虚方法。)

An overriding method in a derived class may in fact want to extend rather than simply replace the base class method of the same name. There is a simple way to call the base class method directly: just call “BaseClassName.methodname(self, arguments)”. This is occasionally useful to clients as well. (Note that this only works if the base class is defined or imported directly in the global scope.)

派生类中的覆盖方法可能是想要扩充而不是简单的替代基类中的重名方法。有一个简单的方法可以直接调用基类方法,只要调用:“BaseClassName.methodname(self, arguments)”。有时这对于客户也很有用。(要注意的中只有基类在同一全局作用域定义或导入时才能这样用。)

9.5.1 多继承 Multiple Inheritance
Python supports a limited form of multiple inheritance as well. A class definition with multiple base classes looks as follows:

Python同样有限的支持多继承形式。多继承的类定义形如下例:

class DerivedClassName(Base1, Base2, Base3):

.
.
.

The only rule necessary to explain the semantics is the resolution rule used for class attribute references. This is depth-first, left-to-right. Thus, if an attribute is not found in DerivedClassName, it is searched in Base1, then (recursively) in the base classes of Base1, and only if it is not found there, it is searched in Base2, and so on.

这里唯一需要解释的语义是解析类属性的规则。顺序是深度优先,从左到右。因此,如果在 DerivedClassName (示例中的派生类)中没有找到某个属性,就会搜索 Base1 ,然后(递归的)搜索其基类,如果最终没有找到,就搜索 Base2,以此类推。

(To some people breadth first – searching Base2 and Base3 before the base classes of Base1 – looks more natural. However, this would require you to know whether a particular attribute of Base1 is actually defined in Base1 or in one of its base classes before you can figure out the consequences of a name conflict with an attribute of Base2. The depth-first rule makes no differences between direct and inherited attributes of Base1.)

(有些人认为广度优先--在搜索Base1的基类之前搜索Base2和Base3--看起来更为自然。然而,如果Base1和Base2之间发生了命名冲突,你需要了解这个属性是定义于Base1还是Base1的基类中。而深度优先不区分属性继承自基类还是直接定义。)

It is clear that indiscriminate use of multiple inheritance is a maintenance nightmare, given the reliance in Python on conventions to avoid accidental name conflicts. A well-known problem with multiple inheritance is a class derived from two classes that happen to have a common base class. While it is easy enough to figure out what happens in this case (the instance will have a single copy of ``instance variables’’ or data attributes used by the common base class), it is not clear that these semantics are in any way useful.

显然不加限制的使用多继承会带来维护上的噩梦,因为 Python 中只依靠约定来避免命名冲突。多继承一个很有名的问题是派生继承的两个基类都是从同一个基类继承而来。目前还不清楚这在语义上有什么意义,然而很容易想到这会造成什么后果(实例会有一个独立的“实例变量”或数据属性复本作用于公共基类。)

9.6 私有变量 Private Variables

There is limited support for class-private identifiers. Any identifier of the form __spam (at least two leading underscores, at most one trailing underscore) is now textually replaced with _classname__spam, where classname is the current class name with leading underscore(s) stripped. This mangling is done without regard of the syntactic position of the identifier, so it can be used to define class-private instance and class variables, methods, as well as globals, and even to store instance variables private to this class on instances of other classes. Truncation may occur when the mangled name would be longer than 255 characters. Outside classes, or when the class name consists of only underscores, no mangling occurs.

Python 对类的私有成员提供了有限的支持。任何形如 __spam(以至少双下划线开头,至多单下划线结尾)随即都被替代为 _classname__spam,去掉前导下划线的 classname 即当前的类名。这种混淆不关心标识符的语法位置,所以可用来定义私有类实例和类变量、方法,以及全局变量,甚至于将其它类的实例保存为私有变量。混淆名长度超过255个字符的时候可能会发生截断。在类的外部,或类名只包含下划线时,不会发生截断。

Name mangling is intended to give classes an easy way to define ``private’’ instance variables and methods, without having to worry about instance variables defined by derived classes, or mucking with instance variables by code outside the class. Note that the mangling rules are designed mostly to avoid accidents; it still is possible for a determined soul to access or modify a variable that is considered private. This can even be useful in special circumstances, such as in the debugger, and that’s one reason why this loophole is not closed. (Buglet: derivation of a class with the same name as the base class makes use of private variables of the base class possible.)

命名混淆意在给出一个在类中定义“私有”实例变量和方法的简单途径,避免派生类的实例变量定义产生问题,或者与外界代码中的变量搞混。要注意的是混淆规则主要目的在于避免意外错误,被认作为私有的变量仍然有可能被访问或修改。在特定的场合它也是有用的,比如调试的时候,这也是一直没有堵上这个漏洞的原因之一(小漏洞:派生类和基类取相同的名字就可以使用基类的私有变量。)

Notice that code passed to exec, eval() or evalfile() does not consider the classname of the invoking class to be the current class; this is similar to the effect of the global statement, the effect of which is likewise restricted to code that is byte-compiled together. The same restriction applies to getattr(), setattr() and delattr(), as well as when referencing dict directly.

要注意的是传入 exec,eval() 或 evalfile() 的代码不会将调用它们的类视作当前类,这与 global 语句的情况类似,global 的作用局限于“同一批”进行字节编译的代码。同样的限制也适用于 getattr(),setattr() 和delattr(),以及直接引用 dict 的时候。

9.7 补充 Odds and Ends

Sometimes it is useful to have a data type similar to the Pascal record'' or C struct’', bundling together a couple of named data items. An empty class definition will do nicely:

有时类似于Pascal中“记录(record)”或C中“结构(struct)”的数据类型很有用,它将一组已命名的数据项绑定在一起。一个空的类定义可以很好的实现这它:

class Employee:
pass

john = Employee() # Create an empty employee record

Fill the fields of the record

john.name = ‘John Doe’
john.dept = ‘computer lab’
john.salary = 1000

A piece of Python code that expects a particular abstract data type can often be passed a class that emulates the methods of that data type instead. For instance, if you have a function that formats some data from a file object, you can define a class with methods read() and readline() that gets the data from a string buffer instead, and pass it as an argument.

某一段 Python 代码需要一个特殊的抽象数据结构的话,通常可以传入一个类,事实上这模仿了该类的方法。例如,如果你有一个用于从文件对象中格式化数据的函数,你可以定义一个带有 read() 和 readline() 方法的类,以此从字符串缓冲读取数据,然后将该类的对象作为参数传入前述的函数。

Instance method objects have attributes, too: m.im_self is the object of which the method is an instance, and m.im_func is the function object corresponding to the method.

实例方法对象也有属性: m.im_self 是一个实例方法所属的对象,而 m.im_func 是这个方法对应的函数对象。

9.8 异常也是类 Exceptions Are Classes Too

User-defined exceptions are identified by classes as well. Using this mechanism it is possible to create extensible hierarchies of exceptions.

用户自定义异常也可以是类。利用这个机制可以创建可扩展的异常体系。

There are two new valid (semantic) forms for the raise statement:

以下是两种新的有效(语义上的)异常抛出形式:

raise Class, instance

raise instance

In the first form, instance must be an instance of Class or of a class derived from it. The second form is a shorthand for:

第一种形式中,instance 必须是 Class 或其派生类的一个实例。第二种形式是以下形式的简写:

raise instance.class, instance

A class in an except clause is compatible with an exception if it is the same class or a base class thereof (but not the other way around – an except clause listing a derived class is not compatible with a base class). For example, the following code will print B, C, D in that order:

发生的异常其类型如果是异常子句中列出的类,或者是其派生类,那么它们就是相符的(反过来说--发生的异常其类型如果是异常子句中列出的类的基类,它们就不相符)。例如,以下代码会按顺序打印B,C,D:

class B:
pass
class C(B):
pass
class D©:
pass

for c in [B, C, D]:
try:
raise c()
except D:
print “D”
except C:
print “C”
except B:
print “B”

Note that if the except clauses were reversed (with “except B” first), it would have printed B, B, B – the first matching except clause is triggered.

要注意的是如果异常子句的顺序颠倒过来( “execpt B” 在最前),它就会打印B,B,B--第一个匹配的异常被触发。

When an error message is printed for an unhandled exception which is a class, the class name is printed, then a colon and a space, and finally the instance converted to a string using the built-in function str().

打印一个异常类的错误信息时,先打印类名,然后是一个空格、一个冒号,然后是用内置函数 str() 将类转换得到的完整字符串。

以上没看

9.9 ==迭代器 Iterators ==

By now, you’ve probably noticed that most container objects can be looped over using a for statement:

现在你可能注意到大多数容器对象都可以用 for 遍历:

for element in [1, 2, 3]:
print element
for element in (1, 2, 3):
print element
for key in {‘one’:1, ‘two’:2}:
print key
for char in “123”:
print char
for line in open(“myfile.txt”):
print line

This style of access is clear, concise, and convenient. The use of iterators pervades and unifies Python. Behind the scenes, the for statement calls iter() on the container object. The function returns an iterator object that defines the method next() which accesses elements in the container one at a time. When there are no more elements, next() raises a StopIteration exception which tells the for loop to terminate. This example shows how it all works:

这种形式的访问清晰、简洁、方便。这种迭代器的用法在 Python 中普遍而且统一。在后台,for 语句在容器对象中调用 iter() 。 该函数返回一个定义了 next() 方法的迭代器对象,它在容器中逐一访问元素。没有后续的元素时,next()抛出一个 StopIteration 异常通知 for 语句循环结束。以下是其工作原理的示例:

s = ‘abc’
it = iter(s)
it

it.next()
‘a’
it.next()
‘b’
it.next()
‘c’
it.next()

Traceback (most recent call last):
File “”, line 1, in -toplevel-
it.next()
StopIteration

Having seen the mechanics behind the iterator protocol, it is easy to add iterator behavior to your classes. Define a iter() method which returns an object with a next() method. If the class defines next(), then iter() can just return self:

了解了迭代器协议的后台机制,就可以很容易的给自己的类添加迭代器行为。定义一个 iter() 方法,使其返回一个带有 next() 方法的对象。如果这个类已经定义了 next(),那么 iter() 只需要返回self:

>>> class Reverse:
    "Iterator for looping over a sequence backwards"
    def __init__(self, data):
        self.data = data
        self.index = len(data)
    def __iter__(self):
        return self
    def next(self):
        if self.index == 0:
            raise StopIteration
        self.index = self.index - 1
        return self.data[self.index]

for char in Reverse(‘spam’):
print char

m
a
p
s

9.10 生成器 Generators

Generators are a simple and powerful tool for creating iterators. They are written like regular functions but use the yield statement whenever they want to return data. Each time the next() is called, the generator resumes where it left-off (it remembers all the data values and which statement was last executed). An example shows that generators can be trivially easy to create:

生成器是创建迭代器的简单而强大的工具。它们写起来就像是正则函数,需要返回数据的时候使用 yield 语句。每次 next() 被调用时,生成器回复它脱离的位置(它记忆语句最后一次执行的位置和所有的数据值)。以下示例演示了生成器可以很简单的创建出来:

def reverse(data):
for index in range(len(data)-1, -1, -1):
yield data[index]

for char in reverse(‘golf’):
print char

f
l
o
g

Anything that can be done with generators can also be done with class based iterators as described in the previous section. What makes generators so compact is that the iter() and next() methods are created automatically.

前一节中描述了基于类的迭代器,它能作的每一件事生成器也能作到。因为自动创建了 iter() 和 next() 方法,生成器显得如此简洁。

Another key feature is that the local variables and execution state are automatically saved between calls. This made the function easier to write and much more clear than an approach using class variables like self.index and self.data.

另外一个关键的功能是两次调用之间的局部变量和执行情况都自动保存了下来。这样函数编写起来就比手动调用 self.index 和 self.data 这样的类变量容易的多。

In addition to automatic method creation and saving program state, when generators terminate, they automatically raise StopIteration. In combination, these features make it easy to create iterators with no more effort than writing a regular function.

除了创建和保存程序状态的自动方法,当发生器终结时,还会自动抛出 StopIteration 异常。综上所述,这些功能使得编写一个正则函数成为创建迭代器的最简单方法。


Footnotes
… namespace!9.1
Except for one thing. Module objects have a secret read-only attribute called dict which returns the dictionary used to implement the module’s namespace; the name dict is an attribute but not a global name. Obviously, using this violates the abstraction of namespace implementation, and should be restricted to things like post-mortem debuggers.
… 是它的一个属性。因此,模块的属性和模块中的全局命名有直接的映射关系:它们共享同一命名空间!9.2
有一个例外。模块对象有一个隐秘的只读对象,名为 dict,它返回用于实现模块命名空间的字典,命名 dict 是一个属性而非全局命名。显然,使用它违反了命名空间实现的抽象原则,应该被严格限制于调试中。

--------------------------------------------------------------------------------
#Subsections 
10.1 操作系统概览 Operating System Interface 
10.2 文件通配符 File Wildcards 
10.3 命令行参数 Command Line Arguments 
10.4 错误输出重定向和程序终止 Error Output Redirection and Program Termination 
10.5 字符串正则匹配 String Pattern Matching 
10.6 数学 Mathematics 
10.7 互联网访问 Internet Access 
10.8 日期和时间 Dates and Times 
10.9 数据压缩 Data Compression 
10.10 性能度量 Performance Measurement 
10.11 质量控制 Quality Control 
10.12 Batteries Included

10. 标准库概览 Brief Tour of the Standard Library

10.1 操作系统概览 Operating System Interface

The os module provides dozens of functions for interacting with the operating system:

os 模块提供了不少与操作系统相关联的函数。

import os
os.system(‘time 0:02’)
0
os.getcwd() # Return the current working directory
‘C:\Python24’
os.chdir(‘/server/accesslogs’)

Be sure to use the “import os” style instead of “from os import *”. This will keep os.open() from shadowing the builtin open() function which operates much differently.

应该用 “import os” 风格而非 “from os import *”。这样可以保证随操作系统不同而有所变化的 os.open() 不会覆盖内置函数 open()。

The builtin dir() and help() functions are useful as interactive aids for working with large modules like os:

在使用一些像 os 这样的大型模块时内置的 dir() 和 help() 函数非常有用。

import os
dir(os)

help(os)

For daily file and directory management tasks, the shutil module provides a higher level interface that is easier to use:

针对日常的文件和目录管理任务,shutil 模块提供了一个易于使用的高级接口。

import shutil
shutil.copyfile(‘data.db’, ‘archive.db’)
shutil.move(‘/build/executables’, ‘installdir’)

10.2 文件通配符 File Wildcards

The glob module provides a function for making file lists from directory wildcard searches:

glob 模块提供了一个函数用于从目录通配符搜索中生成文件列表。

import glob
glob.glob(‘*.py’)
[‘primes.py’, ‘random.py’, ‘quote.py’]

10.3 命令行参数 Command Line Arguments

Common utility scripts often invoke processing command line arguments. These arguments are stored in the sys module’s argv attribute as a list. For instance the following output results from running “python demo.py one two three” at the command line:

通用工具脚本经常调用命令行参数。这些命令行参数以链表形式存储于 sys 模块的 argv 变量。例如在命令行中执行 “python demo.py one two three” 后可以得到以下输出结果:

import sys
print sys.argv
[‘demo.py’, ‘one’, ‘two’, ‘three’]

The getopt module processes sys.argv using the conventions of the Unix getopt() function. More powerful and flexible command line processing is provided by the optparse module.

getopt 模块使用 Unix getopt() 函处理 sys.argv。更多的复杂命令行处理由 optparse 模块提供。

10.4 错误输出重定向和程序终止 Error Output Redirection and Program Termination

The sys module also has attributes for stdin, stdout, and stderr. The latter is useful for emitting warnings and error messages to make them visible even when stdout has been redirected:

sys 还有 stdin, stdout 和 stderr 属性,即使在 stdout 被重定向时,后者也可以用于显示警告和错误信息。

sys.stderr.write(‘Warning, log file not found starting a new one’)
Warning, log file not found starting a new one

The most direct way to terminate a script is to use “sys.exit()”.

大多脚本的定向终止都使用 “sys.exit()”。

10.5 字符串正则匹配 String Pattern Matching

The re module provides regular expression tools for advanced string processing. For complex matching and manipulation, regular expressions offer succinct, optimized solutions:

==re 模块为高级字符串处理提供了正则表达式工具。==对于复杂的匹配和处理,正则表达式提供了简洁、优化的解决方案。

import re
print(re.findall(r'\bf[a-z]*', 'which foot or hand fell fastest'))

print(re.sub(r'(\b[a-z]+) \1', r'\1', 'cat in the the hat'))

['foot', 'fell', 'fastest']


>>> re.sub(r'(\b[a-z]+) \1', r'\1', 'cat in the the hat')
'cat in the hat'

When only simple capabilities are needed, string methods are preferred because they are easier to read and debug:

如果只需要简单的功能,应该首先考虑字符串方法,因为它们非常简单,易于阅读和调试。

‘tea for too’.replace(‘too’, ‘two’)
‘tea for two’

10.6 数学 Mathematics

The math module gives access to the underlying C library functions for floating point math:

math 模块为浮点运算提供了对底层C函数库的访问。

import math
math.cos(math.pi / 4.0)
0.70710678118654757
math.log(1024, 2)
10.0

The random module provides tools for making random selections:

random 提供了生成随机数的工具。

import random
random.choice([‘apple’, ‘pear’, ‘banana’])
‘apple’
random.sample(xrange(100), 10) # sampling without replacement
[30, 83, 16, 4, 8, 81, 41, 50, 18, 33]
random.random() # random float
0.17970987693706186
random.randrange(6) # random integer chosen from range(6)
4

10.7 互联网访问 Internet Access

There are a number of modules for accessing the internet and processing internet protocols. Two of the simplest are urllib2 for retrieving data from urls and smtplib for sending mail:

有几个模块用于访问互联网以及处理网络通信协议。其中最简单的两个是用于处理从 urls 接收的数据的 urllib2 以及用于发送电子邮件的 smtplib。

import urllib2
for line in urllib2.urlopen(‘http://tycho.usno.navy.mil/cgi-bin/timer.pl’):
… if ‘EST’ in line: # look for Eastern Standard Time
… print line


Nov. 25, 09:43:32 PM EST

import smtplib
server = smtplib.SMTP(‘localhost’)
server.sendmail(‘[email protected]’, ‘[email protected]’,
“”"To: [email protected]
From: [email protected]

Beware the Ides of March.
“”")

server.quit()

10.8 日期和时间 Dates and Times

The datetime module supplies classes for manipulating dates and times in both simple and complex ways. While date and time arithmetic is supported, the focus of the implementation is on efficient member extraction for output formatting and manipulation. The module also supports objects that are time zone aware.

datetime 模块为日期和时间处理同时提供了简单和复杂的方法。支持日期和时间算法的同时,实现的重点放在更有效的处理和格式化输出。该模块还支持时区处理。

dates are easily constructed and formatted

from datetime import date
now = date.today()
now
datetime.date(2003, 12, 2)
now.strftime(“%m-%d-%y or %d%b %Y is a %A on the %d day of %B”)
‘12-02-03 or 02Dec 2003 is a Tuesday on the 02 day of December’

dates support calendar arithmetic

birthday = date(1964, 7, 31)
age = now - birthday
age.days
14368

10.9 数据压缩 Data Compression

Common data archiving and compression formats are directly supported by modules including: zlib, gzip, bz2, zipfile, and tarfile.

以下模块直接支持通用的数据打包和压缩格式:

zlib, gzip, bz2, zipfile, 以及 tarfile

import zlib
s = ‘witch which has which witches wrist watch’
len(s)
41
t = zlib.compress(s)
len(t)
37
zlib.decompress(t)
‘witch which has which witches wrist watch’
zlib.crc32(t)
-1438085031

10.10 性能度量 Performance Measurement

Some Python users develop a deep interest in knowing the relative performance between different approaches to the same problem. Python provides a measurement tool that answers those questions immediately.

有些用户对了解解决同一问题的不同方法之间的性能差异很感兴趣。Python 提供了一个度量工具,为这些问题提供了直接答案。

For example, it may be tempting to use the tuple packing and unpacking feature instead of the traditional approach to swapping arguments. The timeit module quickly demonstrates that the traditional approach is faster:

例如,使用元组封装和拆封来交换元素看起来要比使用传统的方法要诱人的多。timeit 证明了传统的方法更快一些。

from timeit import Timer
Timer(‘t=a; a=b; b=t’, ‘a=1; b=2’).timeit()
0.60864915603680925
Timer(‘a,b = b,a’, ‘a=1; b=2’).timeit()
0.8625194857439773

In contrast to timeit’s fine level of granularity, the profile and pstats modules provide tools for identifying time critical sections in larger blocks of code.

相对于 timeit 的细粒度,profile 和 pstats 模块提供了针对更大代码块的时间度量工具。

10.11 质量控制 Quality Control

One approach for developing high quality software is to write tests for each function as it is developed and to run those tests frequently during the development process.

开发高质量软件的方法之一是为每一个函数开发测试代码,并且在开发过程中经常进行测试。

The doctest module provides a tool for scanning a module and validating tests embedded in a program’s docstrings. Test construction is as simple as cutting-and-pasting a typical call along with its results into the docstring. This improves the documentation by providing the user with an example and it allows the doctest module to make sure the code remains true to the documentation:

doctest 模块提供了一个工具,扫描模块并根据程序中内嵌的文档字符串执行测试。测试构造如同简单的将它的输出结果剪切并粘贴到文档字符串中。通过用户提供的例子,它发展了文档,允许 doctest 模块确认代码的结果是否与文档一致。

def average(values):
“”"Computes the arithmetic mean of a list of numbers.

>>> print average([20, 30, 70])
40.0
"""
return sum(values, 0.0) / len(values)

import doctest
doctest.testmod() # automatically validate the embedded tests

The unittest module is not as effortless as the doctest module, but it allows a more comprehensive set of tests to be maintained in a separate file:

unittest 模块不像 doctest 模块那么容易使用,不过它可以在一个独立的文件里提供一个更全面的测试集。

import unittest

class TestStatisticalFunctions(unittest.TestCase):

def test_average(self):
    self.assertEqual(average([20, 30, 70]), 40.0)
    self.assertEqual(round(average([1, 5, 7]), 1), 4.3)
    self.assertRaises(ZeroDivisionError, average, [])
    self.assertRaises(TypeError, average, 20, 30, 70)

unittest.main() # Calling from the command line invokes all tests

10.12 Batteries Included
Python has a ``batteries included’’ philosophy. This is best seen through the sophisticated and robust capabilities of its larger packages. For example:

Python 体现了“batteries included”哲学。Python 可以通过更大的包的来得到应付各种复杂情况的强大能力,从这一点我们可以看出该思想的应用。例如:

  • The xmlrpclib and SimpleXMLRPCServer modules make implementing remote procedure calls into an almost trivial task. Despite the names, no direct knowledge or handling of XML is needed.

  • xmlrpclib 和 SimpleXMLRPCServer 模块实现了在琐碎的任务中调用远程过程。尽管有这样的名字,其实用户不需要直接处理 XML ,也不需要这方面的知识。

  • The email package is a library for managing email messages, including MIME and other RFC 2822-based message documents. Unlike smtplib and poplib which actually send and receive messages, the email package has a complete toolset for building or decoding complex message structures (including attachments) and for implementing internet encoding and header protocols.

  • email 包是一个邮件消息管理库,可以处理 MIME 或其它基于 RFC 2822 的消息文档。不同于实际发送和接收消息的 smtplib 和 poplib 模块,email 包有一个用于构建或解析复杂消息结构(包括附件)以及实现互联网编码和头协议的完整工具集。

  • The xml.dom and xml.sax packages provide robust support for parsing this popular data interchange format. Likewise, the csv module supports direct reads and writes in a common database format. Together, these modules and packages greatly simplify data interchange between python applications and other tools.

  • xml.dom 和 xml.sax 包为流行的信息交换格式提供了强大的支持。同样, csv 模块支持在通用数据库格式中直接读写。综合起来,这些模块和包大大简化了 Python 应用程序和其它工具之间的数据交换。

  • Internationalization is supported by a number of modules including gettext, locale, and the codecs package.

  • 国际化由 gettext, locale和 codecs 包支持。

你可能感兴趣的:(python)