自编码说白了就是一个特征提取器,也可以看作是一个降维器。下面找了一张很丑的图来说明自编码的过程。
自编码分为压缩和解码两个过程。从图中可以看出来,压缩过程就是将一组数据特征进行提取, 得到更深层次的特征。解码的过程就是利用之前的深层次特征再还原成为原来的数据特征。那么如何保证从压缩到解码两部分,原数据和解码数据保持一致呢?这就是要训练的过程。
如何理解降维?如果压缩的过程是卷积,维度可以根据核的个数变化,特征维度因此而改变。
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
from torchvision import transforms
from torchvision.utils import save_image
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
sample_dir = 'samples'
if not os.path.exists(sample_dir):
os.makedirs(sample_dir)
image_size = 784
h_dim = 400
z_dim = 20
num_epochs = 15
batch_size = 128
learning_rate = 1e-3
dataset = torchvision.datasets.MNIST(root='../../data',
train=True,
transform=transforms.ToTensor(),
download=True)
# Data loader
data_loader = torch.utils.data.DataLoader(dataset=dataset,
batch_size=batch_size,
shuffle=True)
模型搭建:这里搭建的是一个变分自编码,Variational Autoencoder
那么变分自编码是为了解决什么问题呢? ——- 其主要思想还是希望学习隐层变量,并将其用来表示原始数据,但是它加另一个条件, 即隐层变量能学习原始数据的分布, 并反过来生产一些和原始数据相似的数据(这有啥用?—-可用于图片修复,让图片按训练集的数据分布变化)。
变分自编码 (Variational Autoencoder) 为了让隐层抓住输入数据特性, 而不是简单的输出数据=输入数据,他在隐层中加入随机噪声(单位高斯噪声)(这个过程也叫reparametrize),以确保隐层能较好抽象输入数据特点。
代码中怎么做的呢?
1、编码过程中我们保存了第二层线性层的输出。其中第二层包含有fc2与fc3两部分,他们是并联的。
2、给隐藏层加入随机噪声,作为解码的输入
class VAE(nn.Module):
def __init__(self, image_size=784, h_dim=400, z_dim=20):
super(VAE, self).__init__()
self.fc1 = nn.Linear(image_size, h_dim)
self.fc2 = nn.Linear(h_dim, z_dim)
self.fc3 = nn.Linear(h_dim, z_dim)
self.fc4 = nn.Linear(z_dim, h_dim)
self.fc5 = nn.Linear(h_dim, image_size)
def encode(self, x):
h = F.relu(self.fc1(x))
return self.fc2(h), self.fc3(h)
def reparameterize(self, mu, log_var):
std = torch.exp(log_var/2)
eps = torch.randn_like(std)
return mu + eps * std
def decode(self, z):
h = F.relu(self.fc4(z))
return F.sigmoid(self.fc5(h))
def forward(self, x):
mu, log_var = self.encode(x)
z = self.reparameterize(mu, log_var)
x_reconst = self.decode(z)
return x_reconst, mu, log_var
训练:由于训练中加入了噪声,所以损失值的结构也因此改变。一部分来源于解码内容核原内容的相似度,另一部分是kl_div,具体是什么意义需查看论文。
model = VAE().to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
# Start training
for epoch in range(num_epochs):
for i, (x, _) in enumerate(data_loader):
# Forward pass
x = x.to(device).view(-1, image_size)
x_reconst, mu, log_var = model(x)
# Compute reconstruction loss and kl divergence
# For KL divergence, see Appendix B in VAE paper or http://yunjey47.tistory.com/43
reconst_loss = F.binary_cross_entropy(x_reconst, x, size_average=False)
kl_div = - 0.5 * torch.sum(1 + log_var - mu.pow(2) - log_var.exp())
# Backprop and optimize
loss = reconst_loss + kl_div
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (i+1) % 10 == 0:
print ("Epoch[{}/{}], Step [{}/{}], Reconst Loss: {:.4f}, KL Div: {:.4f}"
.format(epoch+1, num_epochs, i+1, len(data_loader), reconst_loss.item(), kl_div.item()))
with torch.no_grad():
# Save the sampled images
z = torch.randn(batch_size, z_dim).to(device)
out = model.decode(z).view(-1, 1, 28, 28)
save_image(out, os.path.join(sample_dir, 'sampled-{}.png'.format(epoch+1)))
# Save the reconstructed images
out, _, _ = model(x)
x_concat = torch.cat([x.view(-1, 1, 28, 28), out.view(-1, 1, 28, 28)], dim=3)
save_image(x_concat, os.path.join(sample_dir, 'reconst-{}.png'.format(epoch+1)))
模型训练完成了之后该如何使用这个模型呢?
model.decode()是一个解码的过程,我们给他一个随机的中间特征z就可以输出一个数字图片了。
z = torch.randn(1,z_dim).to(device)
out = model.decode(z)
plt.imshow(out.cpu().data.numpy().reshape(28,28),cmap='gray')
plt.show()
有了随机的一张图片之后,我们把他完整的放入模型中,生成了和输入相似的一张图片,也没看出来是修复了图像......
out,_,_ = model(out)
plt.imshow(out.cpu().data.numpy().reshape(28,28),cmap='gray')
plt.show()