PCL (再探)点云配准精度评价指标——均方根误差

目录

  • 一、算法原理
  • 二、代码实现
  • 三、代码解析
  • 四、备注

本文由CSDN点云侠原创,爬虫随意吧,管你要脸不要脸呢,反正是免费文章。

一、算法原理

见:

  • 点云配准精度评价指标——均方根误差
  • PCL 点云配准精度评价——点到面的均方根误差
  • Open3D(C++) 点云配准精度评价——点到点的均方根误差
  • Open3D(C++) 点云配准精度评价——点到面的均方根误差
  • Open3D 计算点云配准的精度和重叠度
  • matlab 点云配准——计算配准精度
       经历诸多事,我眼中点云已有新意,今时今日,所书所写定然较他日不同,谨以此文献给学习点云配准的萌新。

二、代码实现

#include 
#include 
#include 
#include 
#include 
#include 

using namespace std;

#pragma region//计算配准的均方根误差
float caculateRMSE(pcl::PCLPointCloud2::Ptr& cloud_source, pcl::PCLPointCloud2::Ptr& cloud_target)
{
	pcl::PointCloud<pcl::PointXYZ>::Ptr xyz_source(new pcl::PointCloud<pcl::PointXYZ>());
	fromPCLPointCloud2(*cloud_source, *xyz_source);
	pcl::PointCloud<pcl::PointXYZ>::Ptr xyz_target(new pcl::PointCloud<pcl::PointXYZ>());
	fromPCLPointCloud2(*cloud_target, *xyz_target);

	float rmse = 0.0f;

	pcl::KdTreeFLANN<pcl::PointXYZ>::Ptr tree(new pcl::KdTreeFLANN<pcl::PointXYZ>());
	tree->setInputCloud(xyz_target);

	for (auto point_i : *xyz_source)
	{
		// 去除无效的点
		if (!pcl_isfinite(point_i.x) || !pcl_isfinite(point_i.y) || !pcl_isfinite(point_i.z))
			continue; 
		pcl::Indices nn_indices(1);
		std::vector<float> nn_distances(1);
		if (!tree->nearestKSearch(point_i, 1, nn_indices, nn_distances)) // K近邻搜索获取匹配点对
			continue;
		/*dist的计算方法之一
		size_t point_nn_i = nn_indices.front();
		float dist = squaredEuclideanDistance(point_i, xyz_target->points[point_nn_i]);
		*/

		float dist = nn_distances[0]; // 获取最近邻对应点之间欧氏距离的平方
		rmse += dist;                 // 计算平方距离之和
	}
	rmse = std::sqrt(rmse / static_cast<float> (xyz_source->points.size())); // 计算均方根误差

	return rmse;
}
#pragma endregion

int
main(int argc, char** argv)
{
    // ---------------------------读取源点云---------------------------------
    pcl::PCLPointCloud2::Ptr cloud_source(new pcl::PCLPointCloud2());
    if (pcl::io::loadPCDFile("data//1.pcd", *cloud_source) < 0)
    {
        PCL_ERROR("Could not read file\n");
        return (-1);
    }
    // --------------------------读取目标点云--------------------------------
    pcl::PCLPointCloud2::Ptr cloud_target(new pcl::PCLPointCloud2());

    if (pcl::io::loadPCDFile("data//2.pcd", *cloud_target) < 0)
    {
        PCL_ERROR("Could not read file\n");
        return (-1);
    }
   // ---------------------------计算均方根误差------------------------------
   auto Rmse= caculateRMSE(cloud_source, cloud_target);
   cout << "配准误差为:" << Rmse << endl;
    return 0;
}


三、代码解析

pcl::PointCloud<pcl::PointXYZ>::Ptr xyz_source(new pcl::PointCloud<pcl::PointXYZ>());
	fromPCLPointCloud2(*cloud_source, *xyz_source);

  从读取的“模版”点云中获取xyz坐标,此时输入的原始点云已不再局限于pcl::PointXYZ格式或是其他。代码使用方法见:PCL 读取、保存点云

// 去除无效的点
		if (!pcl_isfinite(point_i.x) || !pcl_isfinite(point_i.y) || !pcl_isfinite(point_i.z))
			continue; 

  去除点云中无效的点。代码使用方法见:删除无效点

pcl::Indices nn_indices(1);
		std::vector<float> nn_distances(1);
		if (!tree->nearestKSearch(point_i, 1, nn_indices, nn_distances)) // K近邻搜索获取匹配点对
			continue;

  K近邻搜索获取匹配点对,更多详细解析见:PCL KD树的使用、PCL KD-ICP实现点云精配准

		size_t point_nn_i = nn_indices.front();
		float dist = squaredEuclideanDistance(point_i, xyz_target->points[point_nn_i]);

  计算最近邻匹配点对欧氏距离的平方。代码使用方法见:PCL 距离计算

float dist = nn_distances[0]; // 获取最近邻对应点之间欧氏距离的平方

  另一种计算最近邻匹配点对欧氏距离平方的方法。为什么是这样,同样见:PCL KD树的使用、PCL KD-ICP实现点云精配准

rmse = std::sqrt(rmse / static_cast<float> (xyz_source->points.size())); // 计算均方根误差

  计算均方根误差。

四、备注

  最准确且最完美的方法仍然是点云配准精度评价指标——均方根误差一文中的, 版本一。

你可能感兴趣的:(CloudCompare,算法,计算机视觉,c++,3d,线性代数)