题目链接
难度:简单
假设你是一位很棒的家长,想要给你的孩子们一些小饼干。但是,每个孩子最多只能给一块饼干。对每个孩子 i,都有一个胃口值 g[i],这是能让孩子们满足胃口的饼干的最小尺寸;并且每块饼干 j,都有一个尺寸 s[j] 。如果 s[j] >= g[i],我们可以将这个饼干 j 分配给孩子 i ,这个孩子会得到满足。你的目标是尽可能满足越多数量的孩子,并输出这个最大数值。
解法1
// 时间复杂度:O(nlogn)
// 空间复杂度:O(1)
class Solution {
public:
int findContentChildren(vector<int>& g, vector<int>& s) {
sort(g.begin(), g.end());
sort(s.begin(), s.end());
int index = s.size() - 1; // 饼干数组的下标
int result = 0;
for (int i = g.size() - 1; i >= 0; i--) {
if (index >= 0 && s[index] >= g[i]) {
result++;
index--;
}
}
return result;
}
};
题目链接
难度:中等
如果连续数字之间的差严格地在正数和负数之间交替,则数字序列称为 摆动序列 。第一个差(如果存在的话)可能是正数或负数。仅有一个元素或者含两个不等元素的序列也视作摆动序列。
例如, [1, 7, 4, 9, 2, 5] 是一个 摆动序列 ,因为差值 (6, -3, 5, -7, 3) 是正负交替出现的。相反,[1, 4, 7, 2, 5] 和 [1, 7, 4, 5, 5] 不是摆动序列,第一个序列是因为它的前两个差值都是正数,第二个序列是因为它的最后一个差值为零。
子序列 可以通过从原始序列中删除一些(也可以不删除)元素来获得,剩下的元素保持其原始顺序。给你一个整数数组 nums ,返回 nums 中作为 摆动序列 的 最长子序列的长度 。
解法1
class Solution {
public:
int wiggleMaxLength(vector<int>& nums) {
if (nums.size() <= 1) return nums.size();
int curDiff = 0; // 当前一对差值
int preDiff = 0; // 前一对差值
int result = 1; // 记录峰值个数,序列默认序列最右边有一个峰值
for (int i = 0; i < nums.size() - 1; i++) {
curDiff = nums[i + 1] - nums[i];
// 出现峰值
if ((curDiff > 0 && preDiff <= 0) || (preDiff >= 0 && curDiff < 0)) {
result++;
preDiff = curDiff;
}
}
return result;
}
};
解法2
class Solution {
public:
int dp[1005][2];
int wiggleMaxLength(vector<int>& nums) {
memset(dp, 0, sizeof dp);
dp[0][0] = dp[0][1] = 1;
for (int i = 1; i < nums.size(); ++i)
{
dp[i][0] = dp[i][1] = 1;
for (int j = 0; j < i; ++j)
{
if (nums[j] > nums[i]) dp[i][1] = max(dp[i][1], dp[j][0] + 1);
}
for (int j = 0; j < i; ++j)
{
if (nums[j] < nums[i]) dp[i][0] = max(dp[i][0], dp[j][1] + 1);
}
}
return max(dp[nums.size() - 1][0], dp[nums.size() - 1][1]);
}
};
题目链接
难度:中等
给你一个整数数组 nums ,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。子数组 是数组中的一个连续部分。
解法1
class Solution {
public:
int maxSubArray(vector<int>& nums) {
int result = INT32_MIN;
int count = 0;
for (int i = 0; i < nums.size(); i++) { // 设置起始位置
count = 0;
for (int j = i; j < nums.size(); j++) { // 每次从起始位置i开始遍历寻找最大值
count += nums[j];
result = count > result ? count : result;
}
}
return result;
}
};
解法2
class Solution {
public:
int maxSubArray(vector<int>& nums) {
int result = INT32_MIN;
int count = 0;
for (int i = 0; i < nums.size(); i++) {
count += nums[i];
if (count > result) { // 取区间累计的最大值(相当于不断确定最大子序终止位置)
result = count;
}
if (count <= 0) count = 0; // 相当于重置最大子序起始位置,因为遇到负数一定是拉低总和
}
return result;
}
};
解法3
class Solution {
public:
int maxSubArray(vector<int>& nums) {
if (nums.size() == 0) return 0;
vector<int> dp(nums.size(), 0); // dp[i]表示包括i之前的最大连续子序列和
dp[0] = nums[0];
int result = dp[0];
for (int i = 1; i < nums.size(); i++) {
dp[i] = max(dp[i - 1] + nums[i], nums[i]); // 状态转移公式
if (dp[i] > result) result = dp[i]; // result 保存dp[i]的最大值
}
return result;
}
};