- DeepSeek使用中的问题及解决方案(部分)
WeiLai1112
DeepSeek人工智能
1.模型部署与配置问题问题1:环境依赖冲突现象:安装模型依赖库时出现版本不兼容(如Python、PyTorch版本冲突)。解决方案:使用虚拟环境(如conda或venv)隔离依赖。严格按照官方文档的版本要求安装依赖,例如:condacreate-ndeepseekpython=3.9condaactivatedeepseekpipinstalltorch==2.0.1transformers==4
- vue3 项目如何接入 AI 大模型
代码搬运媛
人工智能
以下是在Vue3项目中接入AI大模型的一般步骤:准备工作确定要接入的AI模型,如OpenAI的gpt-3.5-turbo、科大讯飞的星火大模型等。选择AI模型及获取API密钥:注册对应AI平台的账号,进入账户设置页面找到“ViewAPIKeys”或类似选项,创建属于自己的API密钥,并妥善保存。创建Vue项目并安装依赖打开命令行,使用vuecreate项目名命令创建一个新的Vue项目,按照提示完成
- TensorFlow LiteRT 概览
姚家湾
tensorflow人工智能python
LiteRT(简称LiteRuntime,以前称为TensorFlowLite)是Google面向设备端AI的高性能运行时。您可以找到适用于各种机器学习/AI任务的LiteRT就绪模型,也可以使用AIEdge转换和优化工具将TensorFlow、PyTorch和JAX模型转换为TFLite格式并运行。主要特性针对设备端机器学习进行了优化:LiteRT解决了五项关键的ODML约束条件:延迟时间(无需
- 使用 Rebuff 进行Prompt Injection的检测和防护
scaFHIO
promptpython
技术背景介绍在AI应用领域,PromptInjection(PI)攻击是一种通过恶意输入操控AI模型行为的攻击方式。这可能导致严重的安全问题,比如数据泄露、执行未授权的操作等。因此,检测和防护PI攻击对保障AI系统安全至关重要。Rebuff是一个自硬化的PromptInjection检测器,通过多阶段防御机制来保护AI应用免受PI攻击。本文将介绍Rebuff的核心原理、代码实现及其在实际开发中的应
- 华为的云端训练算力与迭代效率
AI大模型应用之禅
DeepSeekR1&AI大模型与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
华为云、云端训练、算力、迭代效率、人工智能、深度学习、模型训练、分布式训练、优化算法1.背景介绍人工智能(AI)技术近年来发展迅速,深度学习作为其核心驱动力,在图像识别、自然语言处理、语音识别等领域取得了突破性进展。然而,深度学习模型的训练需要海量数据和强大的计算资源,这成为AI技术发展面临的瓶颈之一。云计算作为一种新型的计算模式,为深度学习提供了强大的算力支持。华为云作为国内领先的云计算平台,在
- 使用Yuan 2.0与LangChain构建智能聊天应用:完整指南
scaFHIO
langchainpython
技术背景介绍Yuan2.0是IEIT系统开发的新一代基础大语言模型,包括Yuan2.0-102B、Yuan2.0-51B和Yuan2.0-2B三种版本。相比之前的Yuan1.0,Yuan2.0使用了更广泛的高质量预训练数据,并通过指令微调数据集增强了模型的语义理解、数学推理、编程知识等能力。为了方便开发者集成,Yuan2.0提供了兼容OpenAIAPI的服务接口。本文将介绍如何通过LangChai
- 使用LM Studio在WordPress基于大模型原创文章上稿进行SEO优化
Mr数据杨
Python自然语言技术wordpress大模型seo1024程序员节
在进行自动化文章生成与发布的流程中,首先需要确保基础配置的完善性和数据的准确性。通过手动设置分类和标签,文章能够在发布时被准确归类,从而提升SEO的效果。通过Excel表格的方式管理这些分类与标签,结合Python脚本,可以高效地实现自动化文章的生成和发布。该流程依赖于对WordPress数据库的操作,包括标签的批量导入、分类和标签的映射,以及通过AI生成内容的自动发布。全面的配置不仅节省了手动处
- uniapp邪门事件
岑梓铭
前端问题uni-app
很久之前在这篇《THREEJS在uni-app中使用(微信小程序)》:THREEJS在uni-app中使用(微信小程序)_uni-app_帶刺的小葡萄-华为开发者空间中学到了如何在uniapp的微信小程序里接入three.js的3d模型由于小程序自身很多不兼容原因,博主建议去用GitHub一个大佬改写的js库来引入适合小程序的three.js,于是我去照搬模仿,然后手动检查了一下,确实可以正常运行
- Leave No Context Behind: Efficient Infinite Context Transformers with Infini-attention
UnknownBody
LLMDailyLLMcontext语言模型人工智能
本文是LLM系列文章,针对《LeaveNoContextBehind:EfficientInfiniteContextTransformerswithInfini-attention》的翻译。不让任何上下文掉队:无限关注的高效无限上下文Transformer摘要1引言2方法3实验4相关工作5结论摘要这项工作介绍了一种将基于Transformer的大型语言模型(LLM)扩展到具有有限内存和计算的无限
- 大厂面试真题-说说DDD中的防腐层以及它和四层架构的关系
鱼跃鹰飞
大厂真题DDD架构设计1024程序员节职场和发展开发语言面试
DDD(领域驱动设计)中的防腐层(Anti-CorruptionLayer,ACL)是一种设计模式,旨在解决不同子系统或限界上下文间由于领域模型或接口不兼容而带来的集成问题。以下是对DDD防腐层的详细介绍,以及它与四层架构的关系:一、DDD防腐层定义:防腐层是一种在不同应用间转换的机制,通过引入一层适配层来隔离和转换不同系统间的交互。作用:隔离领域模型:保护自身领域模型免受其他领域模型代码的侵害。
- 使用Cohere进行文本生成: 从安装到实战
shuoac
python开发语言
Cohere是一家加拿大初创公司,提供自然语言处理模型,帮助企业提升人机交互体验。本文将详细介绍如何使用Cohere进行文本生成,包括环境配置、核心原理、代码演示和实际应用场景分析。1.技术背景介绍随着自然语言处理技术的快速发展,基于大模型的文本生成应用在各行各业中展现出了巨大的潜力。Cohere提供了高效、易用的API,使得开发者能够快速集成高质量的文本生成能力。本文将带你一步步实现这些功能。2
- KTransformers如何通过内核级优化、多GPU并行策略和稀疏注意力等技术显著加速大语言模型的推理速度?
魔王阿卡纳兹
大模型知识札记语言模型人工智能自然语言处理
KTransformers通过内核级优化、多GPU并行策略和稀疏注意力等技术显著加速大语言模型的推理速度,具体体现在以下几个方面:内核级优化:KTransformers采用了高效的内核级优化技术,包括对Transformer模型中的关键操作进行优化。例如,通过使用Llama和Marlin等高效内核,显著提升了计算效率。通过IntelAMX指令集优化,KTransformers在CPU端实现了更高的
- 层次分析法(AHP, Analytic Hierarchy Process)
时代的狂
读书摘要笔记
层次分析法(AHP,AnalyticHierarchyProcess)是一种多层次、多因素的决策分析方法,用于解决复杂的决策问题。它通过将问题结构化,将决策目标分解为多个层次,并对不同的决策因素进行比较,进而得出各因素的相对重要性,并帮助决策者做出合理的决策。层次分析法的基本步骤建立层次结构模型首先将决策问题分解为多个层次,通常包括目标层、准则层(即影响决策的主要因素)、子准则层(即对准则进一步细
- Pytorch实现论文之利用多生成器来预防模式崩溃
这张生成的图像能检测吗
GAN系列优质GAN模型训练自己的数据集人工智能python生成对抗网络机器学习pytorch深度学习计算机视觉
简介简介:一般来说,生成器相比判别器要完成的任务更加困难,前者需要完成数据概率密度的拟合,而后者只需要判别真伪,影响GAN性能的一个问题就是模式奔溃。而采用多生成器可以缓解这个问题。论文中主要设计了多生成器的架构和一个对于鉴别器的新损失设计来缓解这个问题。模型结构采用DCGAN的框架,原始损失基于WGAN-GP的设计理念。论文题目:StudyofPreventionofModeCollapsein
- Wi-Fi 8(802.11bn)的超高可靠性特性介绍
WPG大大通
QUALCOMM产线大大通wifi无线网络自动化网络安全应用前景
Wi-Fi8,即IEEE802.11bn标准,是继Wi-Fi7之后的下一代无线网络技术。这项新技术的目标是提供超高可靠性(UltraHighReliability的无线网域连接,特别适用于对低延迟和高稳定性有严格要求的应用,如扩增实境/虚拟实境(AR/VR)、工业自动化和远端医疗手术等。Wi-Fi8的主要特点包括:1.提高吞吐量:使通过MAC数据服务测得的吞吐量提高25%。2.降低延迟:减少25%
- HCIA网络层协议与IP编址
夏の橘
HCIA学习之路网络
摘要:网络层是OSI模型中的核心层级,负责实现跨网络的数据传输。本文深入解析HCIA认证要求的网络层协议(IP/ICMP/ARP)及IP编址技术,涵盖子网划分、NAT原理及数据转发流程,帮助读者掌握网络层关键技术。目录一、网络层协议核心功能二、核心协议解析1.IP协议(InternetProtocol)2.ICMP协议3.ARP协议三、IPv4编址技术详解1.地址结构与分类关键细节2.子网划分实践
- Oculus SDK:Oculus集成Unity开发环境_2024-07-26_05-43-25.Tex
chenjj4003
游戏开发unity游戏引擎microsoftmruic#python
OculusSDK:Oculus集成Unity开发环境OculusSDK:Oculus集成Unity开发环境环境准备Unity版本选择在开始集成OculusSDK到Unity开发环境之前,选择正确的Unity版本至关重要。OculusSDK支持特定版本的Unity,因此确保你的Unity版本与OculusSDK兼容是必要的。截至撰写本教程时,Oculus建议使用Unity2020.3.14f1或更
- ZBrush:导出与导入ZBrush模型_2024-07-15_19-55-08.Tex
chenjj4003
游戏开发zbrush1024程序员节贴图substancepainter数码相机android
ZBrush:导出与导入ZBrush模型ZBrush模型导出基础了解ZBrush的导出格式ZBrush是一款强大的数字雕塑和绘画软件,它支持多种模型导出格式,以适应不同的下游应用需求。在ZBrush中,最常见的导出格式包括:OBJ:一种广泛支持的3D模型格式,可以包含顶点、面、纹理坐标和法线信息。STL:常用于3D打印,仅包含顶点和面信息,不支持纹理和颜色。FBX:支持动画和骨骼,是游戏和电影行业
- 深入浅出:CUDA是什么,如何利用它进行高效并行计算
码上飞扬
CUDA
在当今这个数据驱动的时代,计算能力的需求日益增加,特别是在深度学习、科学计算和图像处理等领域。为了满足这些需求,NVIDIA推出了CUDA(ComputeUnifiedDeviceArchitecture),这是一种并行计算平台和编程模型。本文将带你全面了解CUDA的基本概念、工作原理及其应用场景。一、什么是CUDA?CUDA(ComputeUnifiedDeviceArchitecture)是由
- 【深度学习】学习率调度策略
黑白交界
深度学习学习深度学习
什么是学习率可以理解为模型在每一次迭代中的模型更新调整的幅度,“学习”新信息的速度。学习率定义了模型权重(参数)在梯度下降或其他优化算法中的更新步伐。较大的学习率意味着在每次参数更新时,模型会进行更大幅度的调整,而较小的学习率则意味着细致的、渐进的调整。适当的学习率可以帮助模型跳出局部最优解。当使用较大的学习率时,模型有可能跨越一些小的局部最优,从而找到全局最优解,但也有可能错过全局最优。因此,在
- 使用LangChain与Clarifai模型进行交互
vaidfl
langchain交互python
在现代AI应用开发中,Clarifai提供了一个完整的AI生命周期管理平台,包括数据探索、数据标注、模型训练、评估和推理。本文将探讨如何使用LangChain库与Clarifai的模型进行交互。技术背景介绍Clarifai是一个全面的AI平台,专注于模型的构建和部署。要开始使用Clarifai,你需要一个账户和个人访问令牌(PAT)。确保先在Clarifai获取或创建你的PAT。核心原理解析通过L
- 深度学习模型中的知识蒸馏是如何工作的?
c++服务器开发
深度学习人工智能
深度学习模型在多个领域,特别是计算机视觉和自然语言处理中,已经取得了革命性的进展。然而,随着模型复杂性和资源需求的不断攀升,如何将这些庞大模型的知识浓缩为更紧凑、更高效的形式,成为了当前研究的热点。知识蒸馏,作为一种将知识从复杂模型转移到更简单模型的策略,已经成为实现这一目标的有效工具。在本文中,我们将深入探究深度学习模型中知识蒸馏的概念、原理及其在各领域的应用,以期为读者提供一个全面而严谨的视角
- 使用LangChain与AI21Jurassic模型进行交互
fgayif
langchain交互python
在本指南中,我们将探讨如何使用LangChain与AI21的Jurassic模型进行交互。为了使用Jamba模型,请使用ChatAI21对象。您可以在LangChain上查看AI21模型和工具的完整列表。环境准备首先,我们需要安装langchain-ai21库。!pipinstall-qUlangchain-ai21环境设置在开始之前,我们需要获取AI21的API密钥,并设置AI21_API_KE
- AnythingLLM 项目安装与配置指南
龙聪山Diane
AnythingLLM项目安装与配置指南anything-llm为开源和闭源的大型语言模型(LLMs)、嵌入器和向量数据库提供开源的ChatGPT体验。在一个应用中提供无限的文档、消息和并发用户,以及权限管理。项目地址:https://gitcode.com/gh_mirrors/an/anything-llm1.项目基础介绍和主要编程语言AnythingLLM是一个全栈应用程序,旨在帮助用户将任
- Ollama部署大模型并安装WebUi
m0_74823611
java
Ollama用于在本地运行和部署大型语言模型(LLMs)的工具,可以非常方便的部署本地大模型安装Linuxcurl-fsSLhttps://ollama.com/install.sh|sh我是ubuntu系统安装,其他系统可以看项目的开源地址有写GitHub-ollama/ollama:GetupandrunningwithLlama3,Mistral,Gemma,andotherlargelan
- 吐血整理!权重持久化方案优化,让你的模型性能飙升
盼达思文体科创
经验分享
吐血整理!权重持久化方案优化,让你的模型性能飙升引言你是否在做深度学习项目时,遭遇过模型训练结果无法有效保存,导致之前的努力付诸东流的痛苦?又或者在模型权重持久化时,发现保存和加载的速度极慢,严重影响项目进度?今天咱们就来好好聊聊权重持久化方案的优化,帮你解决这些让人头疼的问题!核心内容❗传统方案痛点:大多数人都踩过的坑在很多深度学习项目里,大家常用的权重持久化方案存在不少问题。比如说,使用普通的
- 吐血整理!训练时数据增强策略调整,让模型性能飙升
盼达思文体科创
经验分享
吐血整理!训练时数据增强策略调整,让模型性能飙升引言你是否遇到过模型训练效果不佳,明明投入了大量数据,可模型的准确率、泛化能力就是提不上去?其实啊,很多时候问题就出在数据增强策略上。不合理的数据增强方式,就像给运动员吃错了补药,不仅起不到提升效果,还可能适得其反。今天我就来和你好好聊聊训练时数据增强策略的调整,让你的模型也能“脱胎换骨”!核心内容策略选择误区:80%的人都会犯的错场景化描述:你满心
- 吐血整理!模型版本回滚机制支持,让你的模型训练不再走弯路
盼达思文体科创
经验分享
吐血整理!模型版本回滚机制支持,让你的模型训练不再走弯路引言你是否遇到过模型训练过程中,因为一个小失误导致之前的努力白费,只能从头再来的糟心事?为什么辛辛苦苦训练出来的模型,突然效果变差,却找不到问题所在?别担心,模型版本回滚机制的支持,能帮你轻松解决这些难题。接下来,我就带你深入了解这个超实用的技术。核心内容问题根源:模型训练中的常见陷阱在模型训练的过程中,你可能会遇到各种问题。比如,你在调整参
- 吐血整理!模型热加载能力大比拼,谁才是真正王者?
盼达思文体科创
经验分享
吐血整理!模型热加载能力大比拼,谁才是真正王者?引言你是否在开发过程中,为了模型更新而频繁重启服务,浪费大量时间?又是否疑惑为什么有些模型加载速度快如闪电,而有些却慢得像蜗牛?今天就带你深入了解模型热加载能力的支持对比,让你不再为模型加载问题而烦恼!核心内容模型热加载概念科普场景化描述:想象一下,你正在运营一个基于机器学习模型的在线推荐系统。当你训练出了一个新的、性能更好的模型时,如果不能进行热加
- 吐血整理!过拟合抑制策略调整方法大揭秘,让模型性能飙升
盼达思文体科创
经验分享
吐血整理!过拟合抑制策略调整方法大揭秘,让模型性能飙升引言你是否遇到过模型在训练集上表现完美,可一到测试集就“原形毕露”的糟心情况?为啥模型训练得好好的,实际应用时却差强人意呢?这其实就是过拟合在捣乱!接下来,我就带你深入了解过拟合抑制策略的调整方法,让你的模型告别过拟合,重获新生!核心内容数据层面的调整:扩充与清洗的力量场景化描述:你想象一下,你训练模型的数据集就像做饭的食材,如果食材种类单一,
- JVM StackMapTable 属性的作用及理解
lijingyao8206
jvm字节码Class文件StackMapTable
在Java 6版本之后JVM引入了栈图(Stack Map Table)概念。为了提高验证过程的效率,在字节码规范中添加了Stack Map Table属性,以下简称栈图,其方法的code属性中存储了局部变量和操作数的类型验证以及字节码的偏移量。也就是一个method需要且仅对应一个Stack Map Table。在Java 7版
- 回调函数调用方法
百合不是茶
java
最近在看大神写的代码时,.发现其中使用了很多的回调 ,以前只是在学习的时候经常用到 ,现在写个笔记 记录一下
代码很简单:
MainDemo :调用方法 得到方法的返回结果
- [时间机器]制造时间机器需要一些材料
comsci
制造
根据我的计算和推测,要完全实现制造一台时间机器,需要某些我们这个世界不存在的物质
和材料...
甚至可以这样说,这种材料和物质,我们在反应堆中也无法获得......
 
- 开口埋怨不如闭口做事
邓集海
邓集海 做人 做事 工作
“开口埋怨,不如闭口做事。”不是名人名言,而是一个普通父亲对儿子的训导。但是,因为这句训导,这位普通父亲却造就了一个名人儿子。这位普通父亲造就的名人儿子,叫张明正。 张明正出身贫寒,读书时成绩差,常挨老师批评。高中毕业,张明正连普通大学的分数线都没上。高考成绩出来后,平时开口怨这怨那的张明正,不从自身找原因,而是不停地埋怨自己家庭条件不好、埋怨父母没有给他创造良好的学习环境。
- jQuery插件开发全解析,类级别与对象级别开发
IT独行者
jquery开发插件 函数
jQuery插件的开发包括两种: 一种是类级别的插件开发,即给
jQuery添加新的全局函数,相当于给
jQuery类本身添加方法。
jQuery的全局函数就是属于
jQuery命名空间的函数,另一种是对象级别的插件开发,即给
jQuery对象添加方法。下面就两种函数的开发做详细的说明。
1
、类级别的插件开发 类级别的插件开发最直接的理解就是给jQuer
- Rome解析Rss
413277409
Rome解析Rss
import java.net.URL;
import java.util.List;
import org.junit.Test;
import com.sun.syndication.feed.synd.SyndCategory;
import com.sun.syndication.feed.synd.S
- RSA加密解密
无量
加密解密rsa
RSA加密解密代码
代码有待整理
package com.tongbanjie.commons.util;
import java.security.Key;
import java.security.KeyFactory;
import java.security.KeyPair;
import java.security.KeyPairGenerat
- linux 软件安装遇到的问题
aichenglong
linux遇到的问题ftp
1 ftp配置中遇到的问题
500 OOPS: cannot change directory
出现该问题的原因:是SELinux安装机制的问题.只要disable SELinux就可以了
修改方法:1 修改/etc/selinux/config 中SELINUX=disabled
2 source /etc
- 面试心得
alafqq
面试
最近面试了好几家公司。记录下;
支付宝,面试我的人胖胖的,看着人挺好的;博彦外包的职位,面试失败;
阿里金融,面试官人也挺和善,只不过我让他吐血了。。。
由于印象比较深,记录下;
1,自我介绍
2,说下八种基本类型;(算上string。楼主才答了3种,哈哈,string其实不是基本类型,是引用类型)
3,什么是包装类,包装类的优点;
4,平时看过什么书?NND,什么书都没看过。。照样
- java的多态性探讨
百合不是茶
java
java的多态性是指main方法在调用属性的时候类可以对这一属性做出反应的情况
//package 1;
class A{
public void test(){
System.out.println("A");
}
}
class D extends A{
public void test(){
S
- 网络编程基础篇之JavaScript-学习笔记
bijian1013
JavaScript
1.documentWrite
<html>
<head>
<script language="JavaScript">
document.write("这是电脑网络学校");
document.close();
</script>
</h
- 探索JUnit4扩展:深入Rule
bijian1013
JUnitRule单元测试
本文将进一步探究Rule的应用,展示如何使用Rule来替代@BeforeClass,@AfterClass,@Before和@After的功能。
在上一篇中提到,可以使用Rule替代现有的大部分Runner扩展,而且也不提倡对Runner中的withBefores(),withAfte
- [CSS]CSS浮动十五条规则
bit1129
css
这些浮动规则,主要是参考CSS权威指南关于浮动规则的总结,然后添加一些简单的例子以验证和理解这些规则。
1. 所有的页面元素都可以浮动 2. 一个元素浮动后,会成为块级元素,比如<span>,a, strong等都会变成块级元素 3.一个元素左浮动,会向最近的块级父元素的左上角移动,直到浮动元素的左外边界碰到块级父元素的左内边界;如果这个块级父元素已经有浮动元素停靠了
- 【Kafka六】Kafka Producer和Consumer多Broker、多Partition场景
bit1129
partition
0.Kafka服务器配置
3个broker
1个topic,6个partition,副本因子是2
2个consumer,每个consumer三个线程并发读取
1. Producer
package kafka.examples.multibrokers.producers;
import java.util.Properties;
import java.util.
- zabbix_agentd.conf配置文件详解
ronin47
zabbix 配置文件
Aliaskey的别名,例如 Alias=ttlsa.userid:vfs.file.regexp[/etc/passwd,^ttlsa:.:([0-9]+),,,,\1], 或者ttlsa的用户ID。你可以使用key:vfs.file.regexp[/etc/passwd,^ttlsa:.: ([0-9]+),,,,\1],也可以使用ttlsa.userid。备注: 别名不能重复,但是可以有多个
- java--19.用矩阵求Fibonacci数列的第N项
bylijinnan
fibonacci
参考了网上的思路,写了个Java版的:
public class Fibonacci {
final static int[] A={1,1,1,0};
public static void main(String[] args) {
int n=7;
for(int i=0;i<=n;i++){
int f=fibonac
- Netty源码学习-LengthFieldBasedFrameDecoder
bylijinnan
javanetty
先看看LengthFieldBasedFrameDecoder的官方API
http://docs.jboss.org/netty/3.1/api/org/jboss/netty/handler/codec/frame/LengthFieldBasedFrameDecoder.html
API举例说明了LengthFieldBasedFrameDecoder的解析机制,如下:
实
- AES加密解密
chicony
加密解密
AES加解密算法,使用Base64做转码以及辅助加密:
package com.wintv.common;
import javax.crypto.Cipher;
import javax.crypto.spec.IvParameterSpec;
import javax.crypto.spec.SecretKeySpec;
import sun.misc.BASE64Decod
- 文件编码格式转换
ctrain
编码格式
package com.test;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
- mysql 在linux客户端插入数据中文乱码
daizj
mysql中文乱码
1、查看系统客户端,数据库,连接层的编码
查看方法: http://daizj.iteye.com/blog/2174993
进入mysql,通过如下命令查看数据库编码方式: mysql> show variables like 'character_set_%'; +--------------------------+------
- 好代码是廉价的代码
dcj3sjt126com
程序员读书
长久以来我一直主张:好代码是廉价的代码。
当我跟做开发的同事说出这话时,他们的第一反应是一种惊愕,然后是将近一个星期的嘲笑,把它当作一个笑话来讲。 当他们走近看我的表情、知道我是认真的时,才收敛一点。
当最初的惊愕消退后,他们会用一些这样的话来反驳: “好代码不廉价,好代码是采用经过数十年计算机科学研究和积累得出的最佳实践设计模式和方法论建立起来的精心制作的程序代码。”
我只
- Android网络请求库——android-async-http
dcj3sjt126com
android
在iOS开发中有大名鼎鼎的ASIHttpRequest库,用来处理网络请求操作,今天要介绍的是一个在Android上同样强大的网络请求库android-async-http,目前非常火的应用Instagram和Pinterest的Android版就是用的这个网络请求库。这个网络请求库是基于Apache HttpClient库之上的一个异步网络请求处理库,网络处理均基于Android的非UI线程,通
- ORACLE 复习笔记之SQL语句的优化
eksliang
SQL优化Oracle sql语句优化SQL语句的优化
转载请出自出处:http://eksliang.iteye.com/blog/2097999
SQL语句的优化总结如下
sql语句的优化可以按照如下六个步骤进行:
合理使用索引
避免或者简化排序
消除对大表的扫描
避免复杂的通配符匹配
调整子查询的性能
EXISTS和IN运算符
下面我就按照上面这六个步骤分别进行总结:
- 浅析:Android 嵌套滑动机制(NestedScrolling)
gg163
android移动开发滑动机制嵌套
谷歌在发布安卓 Lollipop版本之后,为了更好的用户体验,Google为Android的滑动机制提供了NestedScrolling特性
NestedScrolling的特性可以体现在哪里呢?<!--[if !supportLineBreakNewLine]--><!--[endif]-->
比如你使用了Toolbar,下面一个ScrollView,向上滚
- 使用hovertree菜单作为后台导航
hvt
JavaScriptjquery.nethovertreeasp.net
hovertree是一个jquery菜单插件,官方网址:http://keleyi.com/jq/hovertree/ ,可以登录该网址体验效果。
0.1.3版本:http://keleyi.com/jq/hovertree/demo/demo.0.1.3.htm
hovertree插件包含文件:
http://keleyi.com/jq/hovertree/css
- SVG 教程 (二)矩形
天梯梦
svg
SVG <rect> SVG Shapes
SVG有一些预定义的形状元素,可被开发者使用和操作:
矩形 <rect>
圆形 <circle>
椭圆 <ellipse>
线 <line>
折线 <polyline>
多边形 <polygon>
路径 <path>
- 一个简单的队列
luyulong
java数据结构队列
public class MyQueue {
private long[] arr;
private int front;
private int end;
// 有效数据的大小
private int elements;
public MyQueue() {
arr = new long[10];
elements = 0;
front
- 基础数据结构和算法九:Binary Search Tree
sunwinner
Algorithm
A binary search tree (BST) is a binary tree where each node has a Comparable key (and an associated value) and satisfies the restriction that the key in any node is larger than the keys in all
- 项目出现的一些问题和体会
Steven-Walker
DAOWebservlet
第一篇博客不知道要写点什么,就先来点近阶段的感悟吧。
这几天学了servlet和数据库等知识,就参照老方的视频写了一个简单的增删改查的,完成了最简单的一些功能,使用了三层架构。
dao层完成的是对数据库具体的功能实现,service层调用了dao层的实现方法,具体对servlet提供支持。
&
- 高手问答:Java老A带你全面提升Java单兵作战能力!
ITeye管理员
java
本期特邀《Java特种兵》作者:谢宇,CSDN论坛ID: xieyuooo 针对JAVA问题给予大家解答,欢迎网友积极提问,与专家一起讨论!
作者简介:
淘宝网资深Java工程师,CSDN超人气博主,人称“胖哥”。
CSDN博客地址:
http://blog.csdn.net/xieyuooo
作者在进入大学前是一个不折不扣的计算机白痴,曾经被人笑话过不懂鼠标是什么,