[云计算]两层网络、三层网络的理解

最近参与一个华为HCS云平台的规划设计,主要是辅助角色。过往的经验中,对于网络知识理论学得多,实践比较少,借此项目从新学习了相关的网络知识。本文转自两层网络、三层网络的理解_cj2580的博客-CSDN博客_二层网络和三层网络的区别 ,如有侵权,请联系我删除,谢谢。

1.前言

网络的通用模型是ISO七层模型,其只是提供了一个参考,并没有具体实现,当前现网中使用最多的实现其实是TCP/IP协议族。但是对于TCP/IP,除了表示层和会话层没有体现,其它几层和ISO基本有对应关系。

2.OSI模型科普

  1. 物理层:例如电信号和光信号,例如网卡、光纤、双绞线等都被归到物理层;
  2. 链路层:数据在离散电/光信号的基础之上,被逻辑划分成一帧一帧(Frame)来管理,这一层是数据交换的主要层面,使用网卡MAC地址进行寻址,以太网(定义了一种帧格式)、交换机、集线器都划归这一层;
  3. 网络层:比链路层更高一级的逻辑层,在这一层主要工作的是路由器,路由器基于IP地址进行跨网链路的计算;
  4. 传输层:用来控制网络层传输的,网络层只是一个“尽力而为”的层,其传输不是完全可靠的,传输层提供了TCP和UDP两种机制,负责传输的可靠性。
  5. 表示层:对应了解数据传输意义不大;
  6. 会话层:对应了解数据传输意义不大;
  7. 应用层:最高层的协议,HTTP、SSH、FTP等都被划归这一层,与软件应用相关。

在这七层中网络层、链路层、物理层属于低三层,其余属于高四层,传输层以下是真正通过网络传输数据的层面。关于物理层,主要定义的是各种传输介质的信号传输方式,比如时钟频率、电平高低、信道编码等,这一层只是机械的传输,不涉及数据包选路逻辑,链路层(L2层)和网络层(L3层)才是我们要理解的地方。

3.数据传输实例

    首先看L2链路层,这一层以帧(Frame)为单位组织物理信号,每个帧都需要有一个源地址和目的地址,绝大多数情况下使用的都是网卡MAC地址。这一层主要的数据转发设备是集线器和交换机,对于集线器,由于每一个数据帧都会被复制到各个端口,使每个连接主机收到很多跟自己无关的数据帧,这直接导致主机和集线器之间信道冲突剧烈(冲突域属于物理层概念),因此现在基本不用该设备。而交换机则具有MAC地址学习功能,能够向各个端口准确投放数据帧,这样就大大提高了数据传输效率。对于L2层,交换机只能转发一个子网内的数据帧(子网是通过IP地址划分的),如果要将一个数据帧跨网转发,则需要借助于L3层的路径规划功能。

现在假设有如下网络拓扑结构,ABCD四台主机属于10.0.0.0子网,网关都指向路由器的10.0.0.1端口,EFGH属于10.0.1.0子网,网关指向路由器的10.0.1.1端口。

[云计算]两层网络、三层网络的理解_第1张图片

先看同一子网内的通信的情况(A向C发送数据,这种情况下都是通过IP地址指定的),假如所有的主机、交换机和路由器都刚刚加电,内部没有缓存任何MAC映射表和路由表。A在发送之前,发现C和A在同一个子网内,于是A试图先在物理子网内找一下C,但是在同一物理子网内是通过硬件MAC地址来寻址的,而A此时并不知道C的MAC地址,于是A通过ARP广播来试图获取,发出的广播包包括如下类似内容:(注:广播时用的MAC地址是ff:ff:ff:ff:ff:ff)

交换机1在收到这个ARP广播包后,首先学习到了主机A原来是和1口连接的,然后在缓存中查找C的MAC地址,但是最终没有找到,于是交换机1将这个包从所有端口(连接A的1口除外)发出去,交换机2收到后也会继续广播出去。当主机B和D收到这个广播包之后,发现和自己无关,于是便直接丢弃这个包,不做任何处理;C收到这个广播包后,发现原来是找自己的,于是它发出如下类似格式的回应内容,来告知A自己的身份。

这个过程对于所有参与的交换机也是个学习的过程,因此交换机1和交换机2也学习到了A和C的位置。至此AC相互找到对方后,便可以在同一物理子网之间直接通过指定MAC地址通信了,他们发送数据帧的类似格式如下:

下面再来看跨物理网络通信的情况(A向E发送数据),同样假设设备都刚刚加电,缓存为空。A发现E的IP也是同一网段的,于是又开始广播,但是这次BCD都没有回应。我们此时把视线转到路由器1上,当路由器1收到这个ARP广播包后,为了避免广播风暴的产生,路由器1不会继续广播这个ARP包,但是路由器1会把自己的MAC告诉A,回发如下类似格式的内容:

A在等待超时后,发现当前物理子网内找不到E,但是A已经知道了网关路由器的MAC地址,于是便会将发给E的数据包扔给网关(也就是路由器1的1口),路由器1收到这个包后,发现E的IP在自己内部也没有缓存,于是路由器1也开始了寻找E的过程。相比交换机的子网内“广播找人”,路由器的选路范围更大也更复杂,很多情况下是整个Internet,并且要夸多个运营商,所以在L3层面路由器的路径计算协议较多,包括:RIP、OSPF、IS-IS、BGP、IGRP等协议。路由器之间计算路径时,任何一台路由器都是无法窥探整个网络的,因此每台路由器都只是通过选路算法找到下一跳的最优路径,这些最优路径连接起来便形成了一条完整的路径。换句话说,路由器的转发路径不是一个路由器选择出来的,而是一群路由器共同选择出来的下一跳地址序列。这里假设路由器1直接找到了路由器2。

当路由器2接到寻找主机E的广播包后,发现E位于自己的网络中(当然也提前需要一个广播学习的过程才能知道),便向前一跳路由器(即路由器1)反馈自己离主机E最近,最终经过这样一个“A→网关路由器→路由器间选路→找到主机E所在子网”的过程A终于可以与E进行通信了,由于A和E之间经历了多个物理子网,因此需要多次的L2转发才能实现数据包的到达,这个过程中L3层IP包外包帧的MAC地址会不断变换。A→B→A这个过程中,数据帧和IP包的地址经历过程如下(假设A使用的是本机的88端口,B使用的是本机的99端口):

在这个过程中,数据包在路由器1和2的1<-->4口之间传递时,由于是在一个设备内部,因此可以直接转发,而不用变换帧头,从而提高转发效率。如果A要与其它子网的FGH主机通信,过程基本是一样的,只不过刚开始不会先在当前子网内“广播找人”,而是直接将数据包投递给出口网关。

你可能感兴趣的:(云计算,云计算,网络)