- 【机器学习第四期(Python)】LightGBM 方法原理详解
WW、forever
机器学习原理及代码实现机器学习python人工智能
LightGBM概述一、LightGBM简介二、LightGBM原理详解⚙️核心原理LightGBM的主要特点三、LightGBM实现步骤(Python)可调参数推荐完整案例代码(回归任务+可视化)参考LightGBM是由微软开源的基于梯度提升框架(GBDT)的机器学习算法,专为高性能、高效率设计,适用于大规模数据处理任务。它在准确率、训练速度和资源使用上都优于传统GBDT实现(如XGBoost)
- MCP模型上下文协议:AI人工智能模型训练的自动化调参
AI天才研究院
AI人工智能与大数据人工智能自动化运维ai
MCP模型上下文协议:AI人工智能模型训练的自动化调参关键词:MCP模型、自动化调参、AI训练、超参数优化、上下文协议、机器学习、深度学习摘要:本文深入探讨MCP模型上下文协议在AI模型训练自动化调参中的应用。MCP(ModelContextProtocol)是一种创新的自动化调参框架,通过上下文感知和动态参数调整机制,显著提升模型训练效率和性能。文章将从理论基础、算法实现、数学原理到实际应用进行
- rabbitmq配置参数解析在springboot中
天然玩家
架构设计#Spring配置解析RabbitMQSpringBootJava
1缘起我是一个菜鸟。如何才能在群体中飞得更高?期望是,大家不会用的,我会;大家都会用的,我精。当然了,大家不会用的我也不会。大家会用的,我也可能不会用。勤补拙。我在使用RabbitMQ组件的过程中,一些配置参数,如RabbitMQ连接、发布者、监听者,这些参数均是抄过来的,并不知道真生的含义,现打算弄清楚每个参数的含义,为后续的线上遇到问题,调参做准备。成为调参架构师2入口如何找到RabbitMQ
- 算法大厨日记:猫猫狐狐带你用代码做一锅香喷喷的“预测汤”
Gyoku Mint
AI修炼日记猫猫狐狐的小世界人工智能人工智能机器学习python算法database深度学习数据挖掘
️【开场·今天的料理名叫“预测炖汤”】猫猫:“咱今天突发奇想,决定用机器学习代码给你炖一锅‘预测汤’喵!这不是教你代码,是要告诉你怎么把‘算法’吃进肚子里~”狐狐:“别急,她又在打比方了。这锅汤从数据准备到调参优化,就跟你平常做饭的过程没两样,只不过食材都被咱们用代码换了一遍。”【第一步·数据准备,就是挑菜啦】猫猫:“首先是挑菜(数据预处理),不能什么菜都扔进去锅里吧?要洗干净去皮(数据清洗),再
- 【机器学习第二期(Python)】优化梯度提升决策树 XGBoost
WW、forever
深度学习原理及代码实现机器学习python决策树
优化梯度提升决策树XGBoost一、XGBoost简介二、原理详解2.1基础思想:改进版GBDT2.2目标函数2.3二阶泰勒展开优化2.4树结构优化三、XGBoost实现步骤(Python)可调参数推荐完整案例代码(回归任务+可视化)参考梯度提升决策树GBDT的原理及Python代码实现可参考另一博客-【机器学习第一期(Python)】梯度提升决策树GBDT。XGBoost(ExtremeGrad
- LightGBM:极速梯度提升机——结构化数据建模的终极武器
大千AI助手
人工智能Python#OTHER随机森林算法机器学习决策树人工智能GBDTLightGBM
基于直方图与Leaf-wise生长的高效GBDT实现,横扫Kaggle与工业场景一、为什么需要LightGBM?GBDT的瓶颈传统梯度提升树(如XGBoost)在处理海量数据时面临两大痛点:训练速度慢:需预排序特征&层次生长(Level-wise)内存消耗高:存储特征值与分裂点信息LightGBM的诞生微软亚洲研究院于2017年开源,核心目标:✅训练效率提升10倍✅内存占用降低50%✅保持与XGB
- Day52打卡 @浙大疏锦行
ayuan0119
python打卡shupython
知识点回顾:随机种子内参的初始化神经网络调参指南参数的分类调参的顺序各部分参数的调整心得importtorchimportnumpyasnpimportosimportrandom#全局随机函数defset_seed(seed=42,deterministic=True):"""设置全局随机种子,确保实验可重复性参数:seed:随机种子值,默认为42deterministic:是否启用确定性模式,
- python打卡day52
ZHPEN1
Python打卡python开发语言
神经网络调参指南知识点回顾:随机种子内参的初始化神经网络调参指南参数的分类调参的顺序各部分参数的调整心得参数可视化importtorchimporttorch.nnasnnimportmatplotlib.pyplotaspltimportnumpyasnp#设置设备device=torch.device("cuda:0"iftorch.cuda.is_available()else"cpu")#
- 信息传输仿真:卫星通信系统仿真_(14).系统仿真参数设置
kkchenkx
信号仿真2网络信息可视化信号处理
系统仿真参数设置在卫星通信系统仿真中,系统参数的设置是至关重要的一步。这些参数不仅决定了仿真模型的准确性和可靠性,还直接影响到仿真结果的解释和应用。本节将详细介绍卫星通信系统中常见的参数设置方法,包括卫星轨道参数、地面站参数、信道参数、调制解调参数、编码解码参数等。通过这些参数的合理设置,可以构建出逼真的卫星通信场景,为后续的性能评估和优化提供基础。卫星轨道参数卫星轨道参数是卫星通信系统仿真的基础
- AI人工智能优化:梯度下降算法的参数调优指南
AI原生应用开发
人工智能算法ai
AI人工智能优化:梯度下降算法的参数调优指南关键词:梯度下降、学习率、批量大小、参数调优、机器学习优化、收敛速度、过拟合摘要:梯度下降是机器学习的“引擎”,但它的性能高度依赖参数调优——就像开车时需要调整油门和方向盘。本文用“爬山找宝藏”的故事贯穿全文,从核心概念到实战调参,手把手教你理解学习率、批量大小、迭代次数等关键参数的作用,掌握让模型“又快又准”收敛的调优技巧。背景介绍目的和范围你是否遇到
- python打卡第52天
知识点回顾:随机种子内参的初始化神经网络调参指南参数的分类调参的顺序各部分参数的调整心得##随机种子importtorchimporttorch.nnasnn#定义简单的线性模型(无隐藏层)#输入2个纬度的数据,得到1个纬度的输出classSimpleNet(nn.Module):def__init__(self):super(SimpleNet,self).__init__()#线性层:2个输入
- 无人机调参调的是啥--无人机PID控制机制详解
fengforky
无人机
PID控制基本原理:PID控制器通过三个环节来修正系统误差:比例§环节:与当前误差成正比,提供快速响应积分(I)环节:累积历史误差,消除稳态误差微分(D)环节:预测误差变化趋势,抑制超调地面站调整的主要参数:kP(比例增益):影响系统响应速度值过小:响应迟钝值过大:产生振荡kI(积分增益):影响消除稳态误差的能力值过小:难以消除稳态误差值过大:导致积分饱和和超调kD(微分增益):影响系统阻尼值过小
- Python打卡第52天
猛犸MAMMOTH
Python打卡60天python开发语言机器学习
@浙大疏锦行作业:对于day'41的简单cnn,看看是否可以借助调参指南进一步提高精度。importtorchimporttorch.nnasnnimporttorch.optimasoptimfromtorchvisionimportdatasets,transformsfromtorch.utils.dataimportDataLoaderimportmatplotlib.pyplotaspl
- Kaggle-Predicting Optimal Fertilizers-(多分类+xgboost+同一特征值多样性)
美少女zss
分类数据挖掘人工智能
PredictingOptimalFertilizers题意:给出土壤的特性,预测出3种最佳的肥料数据处理:1.有数字型和类别型,类别不能随意换成数字,独热编码。cat可以直接处理category类型。2.构造一些相关土壤特性特征3.由于label是category类型,但是xgb不可以处理category类型,因此需要先编码,最后求出结果之后再解码。建立模型:1.catboost交叉验证、xgb
- 【大模型】大模型分布式训练问题(上)
油泼辣子多加
大模型实战分布式人工智能深度学习
语言模型的参数规模通常有多大,其对应的模型文件大概有多大?开源大模型通常在名称里直接标明参数规模:“7b”“13b”“70b”分别对应约70亿、130亿和700亿可训练参数。这些权重文件大多采用半精度浮点(FP16)格式存储,每个参数占用2字节,因此理论上“Xb”级模型的权重体积约为2×XGB。实际文件大小会略高于理论值,因为还包含一些元数据、分片索引和兼容性信息。以LLaMA2-13b为例,按1
- Cesium 透明渐变墙 解决方案
醉书生ꦿ℘゜এ
cesium前端cesium
闭合路径修复通过增加额外点确保路径首尾相接透明渐变效果使用RGBA颜色模式实现从完全不透明到完全透明的平滑渐变参数可调性提供多个可调参数,轻松自定义颜色、高度和圆环尺寸完整代码实现varviewer=newCesium.Viewer('cesiumContainer');//生成闭合圆形路径(修复缺口)varcenter=Cesium.Cartesian3.fromDegrees(-75.5977
- 5.11 day17
知识点聚类的指标聚类常见算法:kmeans聚类、dbscan聚类、层次聚类三种算法对应的流程实际在论文中聚类的策略不一定是针对所有特征,可以针对其中几个可以解释的特征进行聚类,得到聚类后的类别,这样后续进行解释也更加符合逻辑。聚类的流程标准化数据选择合适的算法,根据评估指标调参()将聚类后的特征添加到原数据中原则t-sne或者pca进行2D或3D可视化KMeans和层次聚类的参数是K值,选完k指标
- 优化设计的无刷电调及其上位机软件
好好同学
本文还有配套的精品资源,点击获取简介:无刷电调是无人机、航模等领域的关键组件,本资料介绍了如何通过改进电路板设计、调整应用接口、替换适合的电子元器件,以及优化控制算法来提升其性能和适用性。上位机软件在电调参数配置、故障诊断和固件更新方面发挥关键作用,本资料将深入讲解软件开发与应用,以实现最佳电调性能。1.无刷电调硬件设计优化简介在现代工业和消费电子产品中,无刷电机因其高效、低噪音和长寿命的特性而变
- 深度学习调参大法
Joker 007
1024程序员节
目录1.trick1:深度学习调参核心点2.trick2:关于深度学习Model选型问题3.trick3:关于数据4.trick4:关于调参4.1.关于Lossfunction调参策略4.2.关于Learningrate和batchsize调参策略4.3.关于Epochnumber和earlystopping调参策略4.4.关于Optimizer调参策略4.5.关于Activationfuncti
- [智能算法]蚁群算法原理与TSP问题示例
七刀
智能算法算法
目录编辑一、生物行为启发的智能优化算法1.1自然界的群体智能现象1.2人工蚁群算法核心思想二、算法在组合优化中的应用演进2.1经典TSP问题建模2.2算法流程优化三、TSP问题实战:Python实现与可视化3.1算法核心类设计3.2参数敏感性实验3.3可视化分析四、关键参数调优指南4.1基准参数范围4.2动态调参策略4.3性能优化技巧五、扩展应用与前沿方向5.1多目标优化问题5.2深度强化学习融合
- Kaggle-Binary Prediction with a Rainfall Dataset-(回归+特征工程+xgb)
美少女zss
回归数据挖掘人工智能
BinaryPredictionwithaRainfallDataset题意:给你每天的天气信息,让你预测降雨量。数据处理:1.根据特征值构造天气降雨量的新特征值2.根据时间构造月和季节特征3.处理缺失值建立模型:1.建立lightgbm模型2.建立xgboost模型,并进行网格搜索最佳参数模型3.进行模型融合代码:importosimportsysimportwarningsimportnump
- DAY 10 机器学习建模与评估
acstdm
python打卡60天机器学习jupyter
把之前学到的对数据的处理方法都用一遍,以后直接使用处理好的数据。开始机器学习建模(简单建模,不涉及调参)和评估。一、总体流程导库读取数据查看数据信息--理解数据补全缺失值处理异常值离散值处理删除无用列划分数据集特征工程模型训练模型评估模型保存模型预测二、导入需要的包importpandasaspd#用于数据处理和分析,可处理表格数据。importmatplotlib.pyplotasplt#用于绘
- 科研经验贴:AI领域的研究方向总结
勤劳的进取家
论文阅读人工智能机器学习算法
一、数据集(Dataset)定义:用于训练、验证和测试模型的样本集合,通常包含输入特征(如图像、文本)和对应标签(如类别、回归值)。关键作用:数据划分:训练集:用于模型参数学习。验证集:调整超参数(如学习率、正则化强度),防止过拟合。测试集:评估模型的泛化能力(需确保未参与训练或调参)。数据预处理:归一化/标准化(如图像像素值归一化到[0,1])、分词(文本任务)、数据增强(如图像旋转、翻转)。数
- 【机器学习基础】机器学习入门核心算法:K-近邻算法(K-Nearest Neighbors, KNN)
白熊188
机器学习基础python算法机器学习近邻算法
机器学习入门核心算法:K-近邻算法(K-NearestNeighbors,KNN)一、算法逻辑1.1基本概念1.2关键要素距离度量K值选择二、算法原理与数学推导2.1分类任务2.2回归任务2.3时间复杂度分析三、模型评估3.1评估指标3.2交叉验证调参四、应用案例4.1手写数字识别4.2推荐系统五、经典面试题问题1:KNN的主要优缺点?问题2:如何处理高维数据?问题3:KNN与K-Means的区别
- 霍夫圆检测原理及使用案例(带调参过程)
乐平要加油啊
OpenCV计算机视觉opencv人工智能
在工业检测和机器视觉等领域,传统图像处理技术依然是不可或缺的重要方法。特别是圆形目标的检测和定位,传统图像处理技术的能够提供高效且精确的解决方案。本文将详细探讨如何使Python编程语言和OpenCV库,结合霍夫圆算法实现圆形目标的检测。此外,本文提供了调参的具体过程。觉得可以的话,点赞收藏哈。本人励志成为一名大博主,你的支持就是我最大的动力!!目录1霍夫圆检测原理1.1检测原理1.2函数参数解释
- 【重要】【程序】 使用VOFA+进行PID调试
电工电子创新中心
程序单片机stm32嵌入式硬件
使用VOFA+进行PID调试1.VOFA+是啥简单地来说,VOFA+是一个超级串口助手,除了可以实现一般串口助手的串口数据收发,它还可以实现数据绘图(包括直方图、FFT图),控件编辑,图像显示等功能。使用VOFA+,可以给我们平常的PID调参等调试带来方便,还可以自己制作符合自己要求的上位机,为嵌入式开发带来方便。这个是VOFA+的官网VOFA+|VOFA+。2.如何使用VOFA+调试PID2.1
- MPI实现中对消息传递的优化
东北豆子哥
HPC/MPIHPC/MPI
文章目录MPI实现中对消息传递的优化一、小消息优化(通常128KB)三、通信规模敏感优化四、网络硬件特化优化五、可调参数实例六、前沿优化方向MPI实现中对消息传递的优化在MPI实现中,消息传递的优化是核心设计目标之一。OpenMPI、MPICH等主流实现针对不同消息大小和通信规模采用了多层次优化策略,以下是关键优化技术分类说明:一、小消息优化(通常128KB)Rendezvous协议握手后传输:接
- Python训练营-Day11-常见的调参方式
Mallow Flowers
Python训练营python机器学习开发语言深度学习人工智能
超参数调整专题1知识点回顾网格搜索随机搜索(简单介绍,非重点实战中很少用到,可以不了解)贝叶斯优化(2种实现逻辑,以及如何避开必须用交叉验证的问题)time库的计时模块,方便后人查看代码运行时长今日作业:对于信贷数据的其他模型,如LightGBM和KNN尝试用下贝叶斯优化和网格搜索#%%[markdown]##DAY10##1.把之前所有的处理手段都处理一遍,回顾一下全流程,以后就用处理好的部分直
- 机器学习调整参数
张张张张张高高
机器学习python
机器学习调参学习为什么需要调参?调参调的都是哪些参数?怎样调参?手工调参网格搜索随机搜索贝叶斯搜索K折交叉验证如何衡量参数是否合适最近用机器学习进行预测,结果总是不理想,所以决定学一学关于调参的内容,借鉴了网上大神们的笔记,分享个人理解,如果有理解的不到位的地方欢迎大家评论区纠正。为什么需要调参?机器学习中最困难的地方就是为模型找到最好的超参数,模型的性能与超参数有很大的影响。调参调的都是哪些参数
- 机器学习——调参
qq_34872501
机器学习
在实际调整参数之前,我们先要搞清楚两个事情:1.调参的目的是什么?2.调参调的东西具体是什么?第一个问题:调参的目的是什么?调参的最终目的是要使训练之后的模型检测物体更精确,向程序的方向更靠近一步的话,就是使得损失函数(例如SSD中的loss)尽量小(因为利用训练集训练出来的模型质量在训练过程中只能靠验证集来检测)。因此,调参可以看做一个多元函数优化问题。第二个问题:调参调的东西具体是什么?在解答
- SQL的各种连接查询
xieke90
UNION ALLUNION外连接内连接JOIN
一、内连接
概念:内连接就是使用比较运算符根据每个表共有的列的值匹配两个表中的行。
内连接(join 或者inner join )
SQL语法:
select * fron
- java编程思想--复用类
百合不是茶
java继承代理组合final类
复用类看着标题都不知道是什么,再加上java编程思想翻译的比价难懂,所以知道现在才看这本软件界的奇书
一:组合语法:就是将对象的引用放到新类中即可
代码:
package com.wj.reuse;
/**
*
* @author Administrator 组
- [开源与生态系统]国产CPU的生态系统
comsci
cpu
计算机要从娃娃抓起...而孩子最喜欢玩游戏....
要让国产CPU在国内市场形成自己的生态系统和产业链,国家和企业就不能够忘记游戏这个非常关键的环节....
投入一些资金和资源,人力和政策,让游
- JVM内存区域划分Eden Space、Survivor Space、Tenured Gen,Perm Gen解释
商人shang
jvm内存
jvm区域总体分两类,heap区和非heap区。heap区又分:Eden Space(伊甸园)、Survivor Space(幸存者区)、Tenured Gen(老年代-养老区)。 非heap区又分:Code Cache(代码缓存区)、Perm Gen(永久代)、Jvm Stack(java虚拟机栈)、Local Method Statck(本地方法栈)。
HotSpot虚拟机GC算法采用分代收
- 页面上调用 QQ
oloz
qq
<A href="tencent://message/?uin=707321921&Site=有事Q我&Menu=yes">
<img style="border:0px;" src=http://wpa.qq.com/pa?p=1:707321921:1></a>
- 一些问题
文强chu
问题
1.eclipse 导出 doc 出现“The Javadoc command does not exist.” javadoc command 选择 jdk/bin/javadoc.exe 2.tomcate 配置 web 项目 .....
SQL:3.mysql * 必须得放前面 否则 select&nbs
- 生活没有安全感
小桔子
生活孤独安全感
圈子好小,身边朋友没几个,交心的更是少之又少。在深圳,除了男朋友,没几个亲密的人。不知不觉男朋友成了唯一的依靠,毫不夸张的说,业余生活的全部。现在感情好,也很幸福的。但是说不准难免人心会变嘛,不发生什么大家都乐融融,发生什么很难处理。我想说如果不幸被分手(无论原因如何),生活难免变化很大,在深圳,我没交心的朋友。明
- php 基础语法
aichenglong
php 基本语法
1 .1 php变量必须以$开头
<?php
$a=” b”;
echo
?>
1 .2 php基本数据库类型 Integer float/double Boolean string
1 .3 复合数据类型 数组array和对象 object
1 .4 特殊数据类型 null 资源类型(resource) $co
- mybatis tools 配置详解
AILIKES
mybatis
MyBatis Generator中文文档
MyBatis Generator中文文档地址:
http://generator.sturgeon.mopaas.com/
该中文文档由于尽可能和原文内容一致,所以有些地方如果不熟悉,看中文版的文档的也会有一定的障碍,所以本章根据该中文文档以及实际应用,使用通俗的语言来讲解详细的配置。
本文使用Markdown进行编辑,但是博客显示效
- 继承与多态的探讨
百合不是茶
JAVA面向对象 继承 对象
继承 extends 多态
继承是面向对象最经常使用的特征之一:继承语法是通过继承发、基类的域和方法 //继承就是从现有的类中生成一个新的类,这个新类拥有现有类的所有extends是使用继承的关键字:
在A类中定义属性和方法;
class A{
//定义属性
int age;
//定义方法
public void go
- JS的undefined与null的实例
bijian1013
JavaScriptJavaScript
<form name="theform" id="theform">
</form>
<script language="javascript">
var a
alert(typeof(b)); //这里提示undefined
if(theform.datas
- TDD实践(一)
bijian1013
java敏捷TDD
一.TDD概述
TDD:测试驱动开发,它的基本思想就是在开发功能代码之前,先编写测试代码。也就是说在明确要开发某个功能后,首先思考如何对这个功能进行测试,并完成测试代码的编写,然后编写相关的代码满足这些测试用例。然后循环进行添加其他功能,直到完全部功能的开发。
- [Maven学习笔记十]Maven Profile与资源文件过滤器
bit1129
maven
什么是Maven Profile
Maven Profile的含义是针对编译打包环境和编译打包目的配置定制,可以在不同的环境上选择相应的配置,例如DB信息,可以根据是为开发环境编译打包,还是为生产环境编译打包,动态的选择正确的DB配置信息
Profile的激活机制
1.Profile可以手工激活,比如在Intellij Idea的Maven Project视图中可以选择一个P
- 【Hive八】Hive用户自定义生成表函数(UDTF)
bit1129
hive
1. 什么是UDTF
UDTF,是User Defined Table-Generating Functions,一眼看上去,貌似是用户自定义生成表函数,这个生成表不应该理解为生成了一个HQL Table, 貌似更应该理解为生成了类似关系表的二维行数据集
2. 如何实现UDTF
继承org.apache.hadoop.hive.ql.udf.generic
- tfs restful api 加auth 2.0认计
ronin47
目前思考如何给tfs的ngx-tfs api增加安全性。有如下两点:
一是基于客户端的ip设置。这个比较容易实现。
二是基于OAuth2.0认证,这个需要lua,实现起来相对于一来说,有些难度。
现在重点介绍第二种方法实现思路。
前言:我们使用Nginx的Lua中间件建立了OAuth2认证和授权层。如果你也有此打算,阅读下面的文档,实现自动化并获得收益。SeatGe
- jdk环境变量配置
byalias
javajdk
进行java开发,首先要安装jdk,安装了jdk后还要进行环境变量配置:
1、下载jdk(http://java.sun.com/javase/downloads/index.jsp),我下载的版本是:jdk-7u79-windows-x64.exe
2、安装jdk-7u79-windows-x64.exe
3、配置环境变量:右击"计算机"-->&quo
- 《代码大全》表驱动法-Table Driven Approach-2
bylijinnan
java
package com.ljn.base;
import java.io.BufferedReader;
import java.io.FileInputStream;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.Collections;
import java.uti
- SQL 数值四舍五入 小数点后保留2位
chicony
四舍五入
1.round() 函数是四舍五入用,第一个参数是我们要被操作的数据,第二个参数是设置我们四舍五入之后小数点后显示几位。
2.numeric 函数的2个参数,第一个表示数据长度,第二个参数表示小数点后位数。
例如:
select cast(round(12.5,2) as numeric(5,2))  
- c++运算符重载
CrazyMizzz
C++
一、加+,减-,乘*,除/ 的运算符重载
Rational operator*(const Rational &x) const{
return Rational(x.a * this->a);
}
在这里只写乘法的,加减除的写法类似
二、<<输出,>>输入的运算符重载
&nb
- hive DDL语法汇总
daizj
hive修改列DDL修改表
hive DDL语法汇总
1、对表重命名
hive> ALTER TABLE table_name RENAME TO new_table_name;
2、修改表备注
hive> ALTER TABLE table_name SET TBLPROPERTIES ('comment' = new_comm
- jbox使用说明
dcj3sjt126com
Web
参考网址:http://www.kudystudio.com/jbox/jbox-demo.html jBox v2.3 beta [
点击下载]
技术交流QQGroup:172543951 100521167
[2011-11-11] jBox v2.3 正式版
- [调整&修复] IE6下有iframe或页面有active、applet控件
- UISegmentedControl 开发笔记
dcj3sjt126com
// typedef NS_ENUM(NSInteger, UISegmentedControlStyle) {
// UISegmentedControlStylePlain, // large plain
&
- Slick生成表映射文件
ekian
scala
Scala添加SLICK进行数据库操作,需在sbt文件上添加slick-codegen包
"com.typesafe.slick" %% "slick-codegen" % slickVersion
因为我是连接SQL Server数据库,还需添加slick-extensions,jtds包
"com.typesa
- ES-TEST
gengzg
test
package com.MarkNum;
import java.io.IOException;
import java.util.Date;
import java.util.HashMap;
import java.util.Map;
import javax.servlet.ServletException;
import javax.servlet.annotation
- 为何外键不再推荐使用
hugh.wang
mysqlDB
表的关联,是一种逻辑关系,并不需要进行物理上的“硬关联”,而且你所期望的关联,其实只是其数据上存在一定的联系而已,而这种联系实际上是在设计之初就定义好的固有逻辑。
在业务代码中实现的时候,只要按照设计之初的这种固有关联逻辑来处理数据即可,并不需要在数据库层面进行“硬关联”,因为在数据库层面通过使用外键的方式进行“硬关联”,会带来很多额外的资源消耗来进行一致性和完整性校验,即使很多时候我们并不
- 领域驱动设计
julyflame
VODAO设计模式DTOpo
概念:
VO(View Object):视图对象,用于展示层,它的作用是把某个指定页面(或组件)的所有数据封装起来。
DTO(Data Transfer Object):数据传输对象,这个概念来源于J2EE的设计模式,原来的目的是为了EJB的分布式应用提供粗粒度的数据实体,以减少分布式调用的次数,从而提高分布式调用的性能和降低网络负载,但在这里,我泛指用于展示层与服务层之间的数据传输对
- 单例设计模式
hm4123660
javaSingleton单例设计模式懒汉式饿汉式
单例模式是一种常用的软件设计模式。在它的核心结构中只包含一个被称为单例类的特殊类。通过单例模式可以保证系统中一个类只有一个实例而且该实例易于外界访问,从而方便对实例个数的控制并节约系统源。如果希望在系统中某个类的对象只能存在一个,单例模式是最好的解决方案。
&nb
- logback
zhb8015
loglogback
一、logback的介绍
Logback是由log4j创始人设计的又一个开源日志组件。logback当前分成三个模块:logback-core,logback- classic和logback-access。logback-core是其它两个模块的基础模块。logback-classic是log4j的一个 改良版本。此外logback-class
- 整合Kafka到Spark Streaming——代码示例和挑战
Stark_Summer
sparkstormzookeeperPARALLELISMprocessing
作者Michael G. Noll是瑞士的一位工程师和研究员,效力于Verisign,是Verisign实验室的大规模数据分析基础设施(基础Hadoop)的技术主管。本文,Michael详细的演示了如何将Kafka整合到Spark Streaming中。 期间, Michael还提到了将Kafka整合到 Spark Streaming中的一些现状,非常值得阅读,虽然有一些信息在Spark 1.2版
- spring-master-slave-commondao
王新春
DAOspringdataSourceslavemaster
互联网的web项目,都有个特点:请求的并发量高,其中请求最耗时的db操作,又是系统优化的重中之重。
为此,往往搭建 db的 一主多从库的 数据库架构。作为web的DAO层,要保证针对主库进行写操作,对多个从库进行读操作。当然在一些请求中,为了避免主从复制的延迟导致的数据不一致性,部分的读操作也要到主库上。(这种需求一般通过业务垂直分开,比如下单业务的代码所部署的机器,读去应该也要从主库读取数