代码来自闵老师”日撸 Java 三百行(61-70天)
日撸 Java 三百行(61-70天,决策树与集成学习)_闵帆的博客-CSDN博客
理解推荐系统中的矩阵分解参考了:推荐系统中的矩阵分解技术 - 知乎 (zhihu.com)
预测是通过分解后的用户和项目子矩阵相应位置相乘,得到的分数就是推荐的打分。
updateNoRegular()方法是子矩阵更新,是核心代码。这里对应的是上文提到的知乎参考文章中的“随机梯度下降法”。更新的公式如下:
rsme()和mae()两个方法分别是计算均方误差和绝对误差。
Triple类是三重矩阵的数据结构,用于存储不同类型的三种数据类型。
package machinelearning.recommendersystem;
import java.util.Random;
import java.io.*;
/**
* Matrix factorization for recommender systems.
*
* @author WX873
*/
public class MatrixFactorization {
/**
* Used to generate random numbers.
*/
Random rand = new Random();
/**
* Number of users.
*/
int numUsers;
/**
* Number of items.
*/
int numItems;
/**
* Number of ratings.
*/
int numRatings;
/**
* Training data.
*/
Triple[] dataset;
/**
* A parameter for controlling learning regular.
*/
double alpha;
/**
* A parameter for controlling the learning speed.
*/
double lambda;
/**
* The low rank of the small matrices.
*/
int rank;
/**
* The user matrix U.
*/
double[][] userSubspace;
/**
* The item matrix V.
*/
double[][] itemSubspace;
/**
* The lower bound of the rating value.
*/
double ratingLowerBound;
/**
* The upper bound of the rating value.
*/
double ratingUpperBound;
/**
* *********************************************************************
* The first constructor.
*
* @param paraFilename The data filename.
* @param paraNumUsers The number of users.
* @param paraNumItems The number of items.
* @param paraNumRatings The number of ratings.
* @param paraRatingLowerBound
* @param paraRatingUpperBound
* *********************************************************************
*/
public MatrixFactorization(String paraFilename, int paraNumUsers, int paraNumItems,
int paraNumRatings, double paraRatingLowerBound, double paraRatingUpperBound) {
// TODO Auto-generated constructor stub
numUsers = paraNumUsers;
numItems = paraNumItems;
numRatings = paraNumRatings;
ratingLowerBound = paraRatingLowerBound;
ratingUpperBound = paraRatingUpperBound;
try {
readData(paraFilename, paraNumUsers, paraNumItems, paraNumRatings);
} catch (Exception e) {
// TODO: handle exception
System.out.println("File " + paraFilename + " cannot be read! " + e);
System.exit(0);
}//of try
}//of the first constructor
/**
* **********************************************************************
* Set parameters.
*
* @param paraRank The given rank.
* @param paraAlpha
* @param paraLambda
* **********************************************************************
*/
public void setParameters(int paraRank, double paraAlpha, double paraLambda) {
rank = paraRank;
alpha = paraAlpha;
lambda = paraLambda;
}//of setParameters
/**
* ************************************************************
* Read the data from the file.
*
* @param paraFilename
* @param paraNumUsers number of users
* @param paraNumItems number of items
* @param paraNumRatings number of ratings
* @throws IOException
* ************************************************************
*/
public void readData(String paraFilename, int paraNumUsers, int paraNumItems, int paraNumRatings) throws IOException {
File tempFile = new File(paraFilename);
if (!tempFile.exists()) {
System.out.println("File " + paraFilename + " does not exists.");
System.exit(0);
}//of if
BufferedReader tempBufferReader = new BufferedReader(new FileReader(tempFile));
//Allocate space.
dataset = new Triple[paraNumRatings];
String tempString;
String[] tempStringArray;
for (int i = 0; i < paraNumRatings; i++) {
tempString = tempBufferReader.readLine();
tempStringArray = tempString.split(",");
dataset[i] = new Triple(Integer.parseInt(tempStringArray[0]),
Integer.parseInt(tempStringArray[1]), Double.parseDouble(tempStringArray[2]));
}//of for i
tempBufferReader.close();
}//of readData
/**
* *******************************************************
* Initialize subspaces. Each value is in [0, 1].
* *******************************************************
*/
void initializeSubspaces() {
userSubspace = new double[numUsers][rank];
for (int i = 0; i < numUsers; i++) {
for (int j = 0; j < rank; j++) {
userSubspace[i][j] = rand.nextDouble();
}//of for j
}//of for i
itemSubspace = new double[numItems][rank];
for (int i = 0; i < numItems; i++) {
for (int j = 0; j < rank; j++) {
itemSubspace[i][j] = rand.nextDouble();
}//of for j
}//of for i
}//of initializeSubspaces
/**
* ***************************************************
* Predict the rating of the user to the item
* @param paraUser The user index.
* @param paraItem The item index.
* @return
* ***************************************************
*/
public double predict(int paraUser, int paraItem) {
double resultValue = 0;
for (int i = 0; i < rank; i++) {
// The row vector of an user and the column vector of an item
resultValue += userSubspace[paraUser][i] * itemSubspace[paraItem][i];
}//of for i
return resultValue;
}//of predict
/**
* ******************************************************
* Train.
* @param paraRounds The number of rounds.
* *****************************************************
*/
public void train(int paraRounds) {
initializeSubspaces();
for (int i = 0; i < paraRounds; i++) {
updateNoRegular();
if (i % 50 == 0) {
// Show the process
System.out.println("Round " + i);
System.out.println("MAE: " + mae());
}//of if
}//of for i
}//of train
/**
* **************************************************
* Update sub-spaces using the training data.
* **************************************************
*/
public void updateNoRegular() {
for (int i = 0; i < numRatings; i++) {
int tempUserId = dataset[i].user;
int tempItemId = dataset[i].item;
double tempRate = dataset[i].rating;
double tempResidual = tempRate - predict(tempUserId, tempItemId); // Residual
//这里用的是随机梯度下降法
// Update user subspace
double tempValue = 0;
for (int j = 0; j < rank; j++) {
tempValue = 2 * tempResidual * itemSubspace[tempItemId][j];
userSubspace[tempUserId][j] += alpha * tempValue;
}//of for j
// Update item subspace
for (int j = 0; j < rank; j++) {
tempValue = 2 * tempResidual * userSubspace[tempUserId][j];
itemSubspace[tempItemId][j] += alpha * tempValue;
}//of for j
}//of for i
}//of updateNoRegular
/**
* ************************************************
* Compute the RSME.
*
* @return RSME of the current factorization.
* ************************************************
*/
public double rsme() {
double resultRsme = 0;
int tempTestCount = 0;
for (int i = 0; i < numRatings; i++) {
int tempUserIndex = dataset[i].user;
int tempItemIndex = dataset[i].item;
double tempRate = dataset[i].rating;
double tempPrediction = predict(tempUserIndex, tempItemIndex);
if (tempPrediction < ratingLowerBound) {
tempPrediction = ratingLowerBound;
} else if (tempPrediction > ratingUpperBound) {
tempPrediction = ratingUpperBound;
}//of if
double tempError = tempRate - tempPrediction;
resultRsme += tempError * tempError;
tempTestCount++;
}//of for i
return Math.sqrt(resultRsme / tempTestCount);
}//of rsme
/**
* *********************************************************
* Compute the MAE.
*
* @return MAE of the current factorization.
* *********************************************************
*/
public double mae() {
double resultMae = 0;
int tempTestCount = 0;
for (int i = 0; i < numRatings; i++) {
int tempUserIndex = dataset[i].user;
int tempItemIndex = dataset[i].item;
double tempRate = dataset[i].rating;
double tempPrediction = predict(tempUserIndex, tempItemIndex);
if (tempPrediction < ratingLowerBound) {
tempPrediction = ratingLowerBound;
} else if (tempPrediction > ratingUpperBound) {
tempPrediction = ratingUpperBound;
}//of if
double tempError = tempRate - tempPrediction;
resultMae += Math.abs(tempError);
tempTestCount++;
}//of for i
return resultMae / tempTestCount;
}//of mae
public static void testTrainingTesting(String paraFilename, int paraNumUsers, int paraNumItems,
int paraNumRatings, double paraRatingLowerBound, double paraRatingUpperBound,int paraRounds) {
try {
// Step 1. read the training and testing data.
MatrixFactorization tempMF = new MatrixFactorization(paraFilename, paraNumUsers,
paraNumItems, paraNumRatings, paraRatingLowerBound, paraRatingUpperBound);
tempMF.setParameters(5, 0.0001, 0.005);
// Step 2. update and predict
System.out.println("Begin Training ! ! !");
tempMF.train(paraRounds);
double tempMAE = tempMF.mae();
double tempRSME = tempMF.rsme();
System.out.println("Finally, MAE = " + tempMAE + ", RSME = " + tempRSME);
} catch (Exception e) {
// TODO: handle exception
e.printStackTrace();
}//of try
}//of testTrainingTesting
/**
* ***********************************************
* The entrance of the program.
* ***********************************************
*/
public static void main(String args[]) {
testTrainingTesting("E:/Datasets/UCIdatasets/temp/movielens-943u1682m.txt", 943, 1682, 10000, 1, 5, 2000);
}//of main
/**
* The class of triple matrix.
* @author WX873
*/
public class Triple {
public int user;
public int item;
public double rating;
/**
* ************************************************
* The constructor.
* ************************************************
*/
public Triple() {
// TODO Auto-generated constructor stub
user = -1;
item = -1;
rating = -1;
}//of the first constructor
/**
* ************************************************
* The constructor.
* ************************************************
*/
public Triple(int paraUser, int paraItem, double paraRating) {
user = paraUser;
item = paraItem;
rating = paraRating;
}//of the second constructor
/**
* ************************************************
* Show me..
* ************************************************
*/
public String toString() {
return "" + user + ", " + item + ", " + rating;
}//of toString
}// Of class Triple
}//of MatrixFactorization